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Abstract: Global greening over the past 30 years since 1980s has been confirmed by numerous
studies. However, a single-dimensional indicator and non-spatial modelling approaches might
exacerbate uncertainties in our understanding of global change. Thus, comprehensive monitoring for
vegetation’s various properties and spatially explicit models are required. In this study, we used the
newest enhanced vegetation index (EVI) products of Moderate Resolution Imaging Spectroradiometer
(MODIS) Collection 6 to detect the inconsistency trend of annual peak and average global vegetation
growth using the Mann–Kendall test method. We explored the climatic factors that affect vegetation
growth change from 2001 to 2018 using the spatial lag model (SLM), spatial error model (SEM) and
geographically weighted regression model (GWR). The results showed that EVImax and EVImean

in global vegetated areas consistently showed linear increasing trends during 2001–2018, with the
global averaged trend of 0.0022 yr−1 (p < 0.05) and 0.0030 yr−1 (p < 0.05). Greening mainly occurred
in the croplands and forests of China, India, North America and Europe, while browning was
almost in the grasslands of Brazil and Africa (18.16% vs. 3.08% and 40.73% vs. 2.45%). In addition,
32.47% of the global vegetated area experienced inconsistent trends in EVImax and EVImean. Overall,
precipitation and mean temperature had positive impacts on vegetation variation, while potential
evapotranspiration and vapour pressure had negative impacts. The GWR revealed that the responses
of EVI to climate change were inconsistent in an arid or humid area, in cropland or grassland. Climate
change could affect vegetation characteristics by changing plant phenology, consequently rendering
the inconsistency between peak and mean greening. In addition, anthropogenic activities, including
land cover change and land use management, also could lead to the differences between annual peak
and mean vegetation variations.

Keywords: global vegetation growth; climate change; inconsistent greening trend; spatial autocorre-
lation and heterogeneity; spatial regression models

1. Introduction

Terrestrial vegetation controls the cycle of carbon, water and energy between land
soil and atmosphere through biochemical processes such as photosynthesis and evapo-
transpiration and is strongly influenced by hydrothermal conditions and climate change
and can affect the climate system in return [1–3]. In addition to directly providing ecosys-
tem services such as food, raw materials, and landscape aesthetics, vegetation also has
the potential of climate regulation, carbon sequestration and air purification, which are
of great importance to maintaining the stability of a terrestrial ecosystem under global
change [4,5]. Thus, systematic monitoring, detecting and quantifying vegetation dynamics
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and their response and feedback to global change have elicited a wide range of attention in
multiple subjects.

It is currently unlikely to obtain vegetation properties and variations at the global scale
using ground-based observations [5]. Vegetation indices (VIs) products, such as normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI) derived from
satellite observations, provide a possibility for long-term vegetation monitoring on a large
scale [6,7]. VIs products from the Advanced Very-High-Resolution Radiometer (AVHRR)
sensor, Système Pour l’Observation de la Terre VEGETATION (SPOT-VGT) and Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors on board different satellites have
been widely used in vegetation growth monitoring and crop mapping [8–10]. Although
providing the longest record of NDVI data (1981–present), AVHRR has the problems of
orbit drifts and data inconsistency between various sensors. SPOT-VGT data discontinuity
was also found in some areas due to sensor differences in spectral response functions [11].
MODIS data is considered to have a higher temporal consistency than AVHRR and SPOT-
VGT data due to no orbit drift and sensor shifts problems and are usually used as reference
data [12–14]. However, the negative influences of sensor degradation have been captured
in MODIS-Terra Collection 5 VIs products [15]. Consequently, MODIS Collection 6 VIs
products with the improved algorithm were released to address the sensor degradation
problem, and the effects have been supported by some studies [16,17]. Compared to NDVI,
EVI minimizes canopy-soil and atmospheric influences and improves sensitivity over
dense vegetation conditions, and its reliability has been recognized by comparison analysis
of multiple VIs products [10].

The overall greening trend of global vegetation has been widely reported and dis-
cussed since the early 1980s, supported by comparisons of multiple satellite observa-
tions [18], forest inventories [19] and process-based model simulations [20,21]. Pan
et al. [22] explored the increasing global browning trend hidden in overall greening during
1982–2013 by using the ensemble empirical mode decomposition method and piecewise
linear regression models; Gao et al. [23] verified the significant trend of global cultivated
land greening during 1982–2015 by using two long-term satellite LAI datasets; Zhang
et al. [24] found that the previous browning trend monitored by MODIS Terra-C5 needed to
be reconsidered due to sensor degradation, while the trend from MODIS Terra-C6 was con-
firmed by AVHRR and enhanced land carbon sink data [25]. Although a lot of studies have
re-examined global greening trend, whether there is a consistent trend between annual
peak and average growth of vegetation remains unknown. The annual peak vegetation
growth closely related to environmental change is critical in characterizing the capacity of
terrestrial ecosystem productivity [20]. Vegetation growth is an ever-changing dynamic
process. The annual average vegetation growth, which was selected in the most previous
studies, can only reflect the overall state of a certain year but obscure details of vegetation
growth. To comprehensively understand the changing ecosystems, it is necessary to track
vegetation growth change from multi-dimensions.

Climate change characterized by global warming has been a dominant driver of green-
ing over 28% of the global vegetation regions [21]. However, the global vegetation–climate
relationship is complex and has firm spatial heterogeneity [26]. Warming has noticeable
positive effects on vegetation growth in the temperate and arctic regions [27], while rising
temperatures could limit vegetation growth in tropical regions [28] where the ambient
temperature is the proximity of the physiological optimum [29]. In arid and semi-arid
regions, vegetation is more sensitive to precipitation change than temperature due to
water limitation. In contrast, in humid regions, the impacts of precipitation on vegetation
variation are weaker than temperature [30]. In sum, the climate–vegetation relationship ge-
ographically varies with the climatic environment [5,23]. In addition, although temperature
and precipitation have been the hot spots for a long time, the impacts of climate change on
vegetation are more complex than that. For example, the impact of other climatic factors,
such as vapour pressure deficit on vegetation growth, have been highlighted, which could
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offset the effect of rising CO2 concentration, suggested to be considered in evaluating
vegetation responses to climate change [31].

At present, most studies used the non-spatial regression methods to depict the re-
lationship between vegetation variation and climate change, such as multiple linear re-
gression [32] and partial correlation analysis [33]. However, the theoretical assumption
of these methods is that the spatial data is statistically independent and uniformly dis-
tributed [34,35], which ignores influences of spatial autocorrelation. According to the first
law of geography, spatial autocorrelation is ubiquitous, and the correlation between adja-
cent locations is usually stronger than that between distant locations [36,37]. Influenced by
the spatial interaction and spatial diffusion of endogenous or exogenous factors, geographic
data may no longer be independent of each other, but related to each other [38]. For exam-
ple, the flow characteristics of the atmosphere and water supporting vegetation growth
can suggest that vegetation growth are absolutely not spatially independent [37,39,40].
Previous empirical research within ecology have revealed that regression coefficients
may radically shift between non-spatial and spatial (taking autocorrelation into account)
regression modelling, resulting in erroneous conclusions [39,41–44]. Given that spatial
autocorrelation exists extensively in spatial data, it is important to use spatially explicit
models to explore the climate-driving mechanism of vegetation growth. Therefore, the
aims of this study are: (1) to examine inconsistency trends of global vegetation in peak and
average growth during 2001–2018; (2) to reveal the overall relationship between climate
change and vegetation growth using spatial regression models (at the global level); (3) to
find out the spatial heterogeneity characteristic of climate driving using the geographically
weighted regression model (at the local level).

2. Materials and Methods
2.1. Global Datasets and Pre-Processing

EVI, land cover and climatic datasets used in this study are displayed in Table 1. The
raw MODIS data were mosaicked, re-projected and converted to Geo TIFF from HDF
format using the MODIS Reprojection Tool. We averaged monthly EVI as the annual
EVImean and extracted the maximum monthly EVI as the annual EVImax. In the spatial
regression analysis, we resampled EVI data into 0.5◦ × 0.5◦ spatial resolution by using
the bilinear algorithm to match the climatic gridded data as well as the basic analytical
unit. Global terrestrial land cover data are from the International Geosphere-Biosphere
Programme (IGBP) classification layer of MCD12Q1 (Figure 1). To eliminate the direct
effects of transformation between vegetated and non-vegetated land during 2001–2018, we
masked out non-vegetated areas including permanent wetlands, urban and built-up lands,
permanent snow and ice, barren and water bodies by overlaying the IGBP land cover data
during the period of 2001–2018. Global annual climatic gridded data were generated by
extracting the maximum, minimum, mean or sum value from the monthly climatic gridded
data. For example, annual precipitation data were generated by summating monthly
precipitation, while annual maximum temperature data were obtained by calculating the
maximum value of the monthly maximum temperature. All data pre-processing was
accomplished in R x64 4.0.2 and RStudio (http://www.r-project.org/, accessed on 18
September 2020).

http://www.r-project.org/


Remote Sens. 2021, 13, 3442 4 of 19

Table 1. Global datasets and sources.

Dataset Spatial
Resolution

Temporal
Resolution Time Span Source

MODIS-Terra
Collection 6 EVI

(MOD13A3)
1 km Monthly 2001–2018

The Level-1 and Atmosphere Archive and Distribution
System Distributed Active Archive

Center (LAADS DAAC)
(https://ladsweb.modaps.eosdis.nasa.gov/search,

accessed on 6 August 2020).
Land Cover
(MCD12Q1) 500 m Yearly 2001–2018

Precipitation 0.5◦ Monthly 2001–2018

The Climatic Research Unit Time-Series version 4.03
(CRU TS4.03) datasets

(https://data.ceda.ac.uk/badc/cru/data/cru_ts,
accessed on 11 February 2021)

Maximum temperature 0.5◦ Monthly 2001–2018

Mean temperature 0.5◦ Monthly 2001–2018

Minimum temperature 0.5◦ Monthly 2001–2018

Potential
evapotranspiration 0.5◦ Monthly 2001–2018

Vapour pressure 0.5◦ Monthly 2001–2018

Wet day frequency 0.5◦ Monthly 2001–2018

Diurnal temperature
range 0.5◦ Monthly 2001–2018

Frost day frequency 0.5◦ Monthly 2001–2018

Figure 1. Global land cover of IGBP for 2018.

2.2. Methods

A methodological flowchart of this study is shown in Figure 2. Firstly, to find out
the greening and browning areas and the area with inconsistent changes, we detected
the trend of global vegetation growth variation during 2001–2018 from two dimensions
of annual peak and mean using the Mann–Kendall test method recommended by the
World Meteorological Organization in Section 2.2.1. Secondly, to prove our theoretical
hypothesis that spatial autocorrelation exists in vegetation growth change, the global
univariate Moran’s I was first used to diagnose the spatial autocorrelation in the response
variable in Section 2.2.2. The response variables were the changes of EVImax and EVImean

https://ladsweb.modaps.eosdis.nasa.gov/search
https://data.ceda.ac.uk/badc/cru/data/cru_ts
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from 2001 to 2018, and the explanatory variables are the changes of climatic variables from
2001 to 2018.

Figure 2. A methodological flowchart of this research.

Thirdly, to incorporate spatial autocorrelation in the response of vegetation growth
to climate change, we used multiple spatial regression models to analyse the spatial
relationship between climate change and vegetation variation at the global level. The first
step is to perform the ordinary least squares (OLS) model, which is under the assumption
that there is no autocorrelation [45] because the spatial lag model (SLM) and the spatial
error model (SEM) are developed from the OLS by incorporating spatial autocorrelation
into the regression by means of a spatial weight matrix [34]. SLM was used when spatial
autocorrelation exists in dependent variables. SEM was used when spatial autocorrelation
exists in the residual. The second step is to select SLM or SEM based on the statistical
significance of the Lagrange multiplier (LM)-lag and LM-error, or robust LM-lag and
robust LM-error. The third step is to determine the better performance model, with a larger
maximum likelihood logarithm (LIK) and a smaller Akaike information criterion (AIC)
and Schwarz criterion (SC).

Finally, the relationship between variables varies with the change of geographical
location due to the differences in the natural environment and human disturbance in
different regions. This changing relationship also needs to be considered in the spa-
tial analysis [46]. To reveal the differentiated local characteristics hidden in the over-
all correlation, we used the geographically weighted regression (GWR) model to mea-
sure the spatial heterogeneity of the relationship between vegetation growth and climate
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change by obtaining local regression results at each spatial unit in Section 2.2.4. The
spatial autocorrelation analysis and the OLS, SLM and SEM were conducted in GeoDa
software (http://geodacenter.github.io/, accessed on 8 February 2021). The GWR model
was conducted in GWR4 software (https://gwr4.software.informer.com/, accessed on 11
March 2021).

2.2.1. Trend Detection of Vegetation Growth

The linear trend of global vegetation growth during 2001–2018 at each grid cell were
estimated using Sen’s slope method, also known as the Theil–Sen median method [47].
The method is a robust non-parametric statistical trend calculation method that has high
computational efficiency and is insensitive to measurement error and outlier data [48]. Sen’
slope was calculated by Equation (1):

Slope = Median
( xj − xi

j− i

)
, ∀j > i (1)

where the median refers to the mean value of all the slopes, and xi and xj represent the EVI
values of years i and j.

Then the Mann–Kendall test method was used to test the significance of the Sen’
slope [49,50]. The significant confidence level with p < 0.05 corresponds to the absolute
value of the Z statistic >1.96. The Sen’ slope and Mann–Kendall test for EVI data at each
grid cell were accomplished in R x64 4.0.2.

2.2.2. Spatial Autocorrelation Analysis

Moran’s I statistic is arguably the most commonly used indicator of global spatial
autocorrelation. It was initially suggested by Moran [51], and popularized through the
classic work on spatial autocorrelation by Cliff and Ord [35]. For an observation at location
i, this is expressed as zi = xi − x, where x is the mean of variable x. Moran’s I statistic
is then:

I =
∑i ∑j wijzizj/ ∑i ∑j wij

∑i z2
i /n

(2)

where n is the number of observations, wij is the elements of the spatial weights matrix, xi
and xj are the observed value of the location i and its surrounding location j, x is the mean
of variable x.

At a given significance level, when Moran’s I > 0, it indicates a positive correlation
between the observed values, and similar attributes cluster together. That is, the high value
is adjacent to the high value, and the low value is adjacent to the low value; when I < 0,
it indicates a negative correlation between the observed values, and the observations are
dispersed; when I = 0, the observed value is randomly distributed.

2.2.3. Spatial Regression at the Global Level

Anselin [34] put forward the general form of spatial regression. When ρ = 0, β 6= 0, α = 0,
the model is the ordinary least squares (OLS) model; When ρ 6= 0, β 6= 0, α = 0, the model
is a spatial lag model (SLM), that is, the dependent variable of a location is not only related
to the independent variable of the location, but also related to the dependent variable of the
neighbourhood. When ρ = 0, β 6= 0, α 6= 0, the model is a spatial error model (SEM), that is,
the dependent variable of a location is not only related to the independent variable of the
location, but also related to other variables not considered at adjacent regions.

y = ρW1y + βx + εε = αW2ε + µ µ ∼ N
(

0, σ2 In

)
(3)

where y is the dependent variable, x is the independent variable, W1 is the spatial weight
matrix of the dependent variable, ρ is the coefficient of the spatial lag variable W1y, β is the

http://geodacenter.github.io/
https://gwr4.software.informer.com/
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coefficient of x, ε is the residual, W2 is the spatial weight matrix of ε, α is the coefficient of ε,
µ is the random error of normal distribution, σ is the variance of µ.

2.2.4. Spatial Regression at the Local Level

The GWR model is essentially the locally weighted least squares regression model,
which is an extension of the OLS model [52]. In GWR, the weight of the observations is no
longer constant during the regression process but is weighted by the degree of adjacency
to location i [53]. The model structure is as follows:

yi = β0(µi, vi) +
k

∑
j=1

β j(µi, vi)xij + εi (4)

where, (µi, vi) is the co-ordinate of i, β j(µi, vi) is the jth regression parameter of i.

3. Results
3.1. Temporal Trend of Global Vegetation Growth

EVImax can reflect the potential productivity of terrestrial vegetation, and EVImean
represents the average vegetation growth state in a year, which depicts two aspects of veg-
etation change. Globally, peak (EVImax) and average (EVImean) growth in global vegetation
consistently showed linear increasing trends during 2001–2018, with the global averaged
trend of 0.0030 yr−1 (p < 0.05) and 0.0022 yr−1 (p < 0.05). In terms of EVImax, 18.16% of
the global vegetated areas showed a statistically significant (Mann–Kendall test, p < 0.05)
greening during 2001–2018, and 3.08% of the global vegetated areas showed a statistically
significant (Mann–Kendall test, p < 0.05) browning during 2001–2018 (Figure 3a). By over-
laying land cover, we found that the most dramatic greening occurred mainly in those
areas with cropland agricultural activities, such as Northern China, India, Central-North
America and Southeast Europe. The fastest degradation areas were mainly the grassland
of Africa and South America, such as Tanzania, Nigeria and Brazil.

In terms of the EVImean, 40.73% of the global vegetated areas showed a statistically
significant (Mann–Kendall test, p < 0.05) greening during 2001–2018, and 2.45% of the
global vegetated areas showed a statistically significant (Mann–Kendall test, p < 0.05)
degradation trend (Figure 3b). The most obvious greening areas mainly occurred in China,
India, Canada and Europe, covering a variety of land types including cropland, shrubland,
forests and savannas. Vegetation degradation areas were mainly grassland and savannas
in areas of South America and southern Africa.

3.2. Inconsistent Global Vegetation Growth in Terms of EVImax and EVImean

It is worth noting that EVImax and EVImean experienced consistent changes in 15.97%
of the global vegetated areas (14.99% for greening and 0.98% for browning) (Figure 4).
However, 32.47% of the global vegetated areas experienced inconsistent changes for EVImax
and EVImean. Specifically, 25.74% of the global vegetated areas that experienced significant
greening in EVImean, with no increase in EVImax simultaneously, occurred mainly in of
Europe, Russia, Central Africa, North America and China. On the contrary, 3.17% of the
global vegetated areas that experienced significant browning in EVImax, with no increase
in EVImean simultaneously, were mainly distributed in Northern Canada, Eastern Russia,
Southern Australia, and were scattered in South America and Africa. There was also 2.10%
of the global vegetated area showing a significant browning in EVImax, with no decrease
in EVImean simultaneously, scattered in Africa, South America and Canada, especially in
Argentina and Madagascar. While 1.46% of the global vegetated area showed a decreased
trend for EVImean, with no decrease in EVImax simultaneously, such as Central Africa,
Central Russia, Eastern Canada and Eastern Brazil. In addition, we found that EVImax
and EVImean had opposite trends in some areas; however, these areas together accounted
for only 0.56% of the inconsistent area. EVImean increased but EVImax decreased in 0.52%



Remote Sens. 2021, 13, 3442 8 of 19

of the inconsistent area, while EVImax increased but EVImean decreased in 0.04% of the
inconsistent area.

Figure 3. Trends of global vegetation growth during 2001–2018. (a) Trend in EVImax at each grid. (b) Trend in EVImean at
each grid. White indicates non-vegetated areas including barren, permanent snow and ice, permanent wetlands, and urban
and built-up lands. Vegetated areas with statistically insignificant (Mann-Kendall test, p < 0.05) are colored grey.

3.3. Relationship between Climate Change and Vegetation Growth

In this study, the Moran’s I values for the EVImax and EVImean changes during
2001–2018 were 0.273 and 0.549 (p < 0.05), showing that a significant positive spatial
autocorrelation existed in EVI changes in the past 18 years. The multicollinearity condition
number was 4.74 (<30) from the OLS model estimation results, indicating no multicollinear-
ity problems in the explanatory variables. The test statistics of LM-lag, LM-error, robust
LM-lag and robust LM-error that form the OLS model were all significant (p < 0.0001); thus,
SLM and SEM were both built to analyse spatial global correlation between vegetation and
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climate factors. By comparing the index of LIK, AIC and SC, SLM has the largest LIK value
and the smallest AIC and SC value, showing that SLM is superior to SEM and OLS in this
study (Table 2). R-squared represents the degree to which nine climatic factors explained
the global vegetation change in the past 18 years. R2 in SLM were 0.5370 and 0.2499 for
EVImean and EVImax, respectively, indicating climatic drivers and the spatial lags of EVI
could explain more than half and the 24.99% changes of EVImean and EVImax, respectively.

Figure 4. Inconsistency between EVImax and EVImean variations during 2001–2018.

Table 2. Comparison of spatial regression models.

Dependent Variables Model R2 LIK AIC SC

EVImax

OLS 0.0229 96,424.5 −192,829 −192,739
SLM 0.2499 103,235.0 −206,448 −206,349
SEM 0.2498 103,225.8 −206,432 −206,342

EVImean

OLS 0.0817 84,046.7 −168,073 −167,983
SLM 0.5370 102,864.0 −205,706 −205,606
SEM 0.5372 102,851.1 −205,682 −205,592

Notes: R-squared (R2), maximum likelihood logarithm (LIK), Akaike information criterion (AIC), Schwarz
criterion (SC), Ordinary least square (OLS), Spatial lag model (SLM), Spatial error model (SEM).

The regression results of the best fit model (SLM) in this study for EVImax and EVImean
were shown in Table 3. The spatial lag of EVImax in SLM passed the statistical significance
test (p < 0.05) during 2001–2018, proving that changes in EVI were correlated not only
to these climatic factors but also to EVI variation in its adjacent areas. The coefficient
indicates that the vegetation in a certain location might change by 0.7472 units for every
1-unit change of vegetation in its adjacent areas. Precipitation and mean temperature
had a statistically significant (p < 0.05) positive correlation with EVImax during 2001–2018,
while potential evapotranspiration and vapour pressure had a statistically significant
negative correlation with EVImax. Compared to EVImax, EVImean had a higher R-squared
than EVImax, 0.5370 vs 0.2499 (Table 2), indicating a higher climatic driving explanation of
EVImean. Except for precipitation and mean temperature, minimum temperature also had
a statistically significant (p < 0.05) positive correlation with EVImean change. The coefficient
of spatial lag for EVImean was 0.8721, suggesting EVImean had a higher correlation with its
adjacent EVImean and, therefore, a stronger spatial dependence than EVImax.
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Table 3. Regression results of spatial lag model (SLM).

Dependent
Variables

Independent
Variables Coefficient Standard Error Z Statistic Probability

EVImax

Lag term 0.7472 0.0059 126.9690 0.00000
Constant - - - >0.05

PRE 0.0105 0.0038 2.7355 0.00623
TMX - - - >0.05
TMP 0.0060 0.0029 2.0398 0.04137
TMN - - - >0.05
PET −0.0142 0.0027 −5.2688 0.00000
WET - - - >0.05
VAP −0.0110 0.0027 −4.1029 0.00004
FRS - - - >0.05
DTR - - - >0.05

EVImax = 0.0105PRE + 0.0060TMP− 0.0142PET− 0.0110VAP + 0.7472Lag term + ε

EVImean

Lag term 0.8721 0.0038 227.8330 0.00000
Constant - - - >0.05

PRE 0.0165 0.0038 4.3219 0.00002
TMX - - - >0.05
TMP 0.0111 0.0029 3.7669 0.00017
TMN 0.0079 0.0015 5.0860 0.00000
PET −0.0137 0.0027 −5.0794 0.00000
WET - - - >0.05
VAP −0.0138 0.0027 −5.1319 0.00000
FRS - - - >0.05
DTR - - - >0.05

EVImean = 0.0165 PRE + 0.0111TMP + 0.0079TMN− 0.0137PET− 0.0138VAP + 0.8721Lag term + ε

Notes: Lag term here is the spatial lag variable of the dependent variable obtained by the spatial weight matrix in 2.2.3; PRE = precipitation,
TMX = maximum temperature, TMP = mean temperature, TMN = minimum temperature, PET = potential evapotranspiration, WET = wet
day frequency, VAP = vapour pressure, FRS = frost day frequency, DTR = diurnal temperature range.

3.4. Spatial Heterogeneity of the Climatic Driving

After examining the relationship at the global level by SLM, we then focused on the
representative areas with significant greening or browning identified in the previous trend
analysis. We further explored how climate change affects vegetation in these areas with the
GWR model results. Five highly representative regions were selected for further analysis,
located in China, India, North America, Brazil and Africa. The areas in China, India and
North America were characterized by vegetation greening, while the areas in Africa and
Brazil were characterized by vegetation browning. Local coefficients of climatic drivers for
EVImax and EVImean were mapped in Figures 5 and 6, respectively.

As shown in Figure 5, in Northern China, EVImax was positively affected by precip-
itation, potential evapotranspiration, minimum temperature and humid days, and was
limited by maximum temperature and vapour pressure. However, in Southern China,
maximum temperature and vapour pressure had positive effects, as well as potential evap-
otranspiration and humid days. The reason was that there are semi-arid areas in the north
where precipitation is low and potential evapotranspiration is far greater than precipitation
and the high temperature would lead to insufficient rainwater irrigation for crops and
grass. It indicated that, due to the difference in climatic conditions (an arid or humid area)
and vegetation types (cropland or grassland), the responses of EVImax to climate change
in South and North China are inconsistent. In India, except minimum temperature, all
other factors had positive impacts on the EVImax. In North America, EVImax was positively
influenced by potential evapotranspiration and humid day but negative by precipitation
and vapour pressure. In Brazil, the degradation of the EVImax might be due to the de-
crease in maximum temperature, potential evapotranspiration and humid days and the
increase in mean temperature and diurnal temperature range. In Africa, the degradation of
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EVImax might be due to the joint decrease in mean temperature, humid days and diurnal
temperature range and the increase in evapotranspiration and maximum temperature.

Figure 5. Local coefficients of climatic factors influencing EVImax from the GWR model. Five highly representative areas of
the EVImax trend were given in the figure.

As shown in Figure 6, we found that maximum temperature, minimum temperature
and humid days also had opposite effects on EVImean in Northern and Southern China. In
addition, precipitation and vapour pressure had consistently positive effects on both the
south and north. In India, potential evapotranspiration, maximum temperature and humid
days had positive effects on EVImean. In North America, temperature mainly had a positive
effect in these greening areas, but potential evapotranspiration and diurnal temperature
range had negative effects. However, precipitation and vapour pressure had opposite
impacts on Canada and the United States, with negative and positive, respectively. In
Brazil, all browning areas of EVImean occurred in grassland, which might be affected by the
decrease in precipitation, mean temperature, potential evapotranspiration and wet days.
In Africa, degradation of vegetation also occurred in grassland and was caused by the
decrease in precipitation, mean temperature, vapour pressure and wet days.

We defined the climate factor having the largest absolute value of the local coefficient
with a statistical significance (p < 0.05) as the dominant climatic factor influencing vegeta-
tion change (Figure 7a,b). In the meantime, the local coefficients of the dominant climatic
factors of EVImax and EVImean were mapped in Figure 7c,d. We found that the EVImax
change was strongly influenced by precipitation in 14.02% of the global vegetated areas
during 2001–2018, followed by vapour pressure (12.56%), minimum temperature (9.87%),
mean temperature (9.10%) and potential evapotranspiration (6.96%) (Figure 7a). 21.06% of
the global vegetated areas where peak vegetation growth had no significant correlation
(p > 0.05) with any climatic factor. In terms of the EVImean, the global vegetated areas were
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strongly affected by mean temperature (17.36%) and precipitation (16.97%) (Figure 7b).
There were 11.86% of the global vegetated areas where EVImean change had no significant
correlation (p > 0.05) with any climatic factor.

Figure 6. Local coefficients of all climatic factors influencing EVImean from the GWR model. Five highly representative
areas of the EVImean trend were given in the figure.

Figure 7. Dominant climatic drivers influencing (a) EVImax and (b) EVImean; local coefficients of the dominant climatic
factors for (c) EVImax and (d) EVImean at each grid.
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4. Discussion
4.1. Comparison of Global Vegetation Trend Results and Uncertainties

The trends of EVImean and EVImax during 2001–2018 were detected in this study and were
compared with previous studies (Table 4). Zhang et al. [24] found that the global vegetation has
an increasing trend of 0.0028 yr−1 and 0.0023 yr−1 at a significant level (p < 0.0001) in EVImean
and EVImax during 2001–2015, respectively. The results were consistent with our results of
0.0022 yr−1 and 0.0030 yr−1 in EVImean and EVImax, respectively. Moreover, the results from
NDVI also showed the greening trend, with 0.0022 yr−1 and 0.0015 yr−1 in NDVImean and
NDVImax during 2001–2015, respectively [24], 0.0013 yr−1 in NDVImax during 1982–2011 [20],
and 0.0012 yr−1 in the growing season NDVI during 1982–2013 [54]. Overall, the global greening
trends were found in both our and previous studies.

However, there were some differences in global vegetation greening or browning
areas due to different satellite products, vegetation greenness indicators and time range.
For example, Ding [57] found that 18.9% of the global vegetated area had a greening trend
for EVImean during 2000–2015, while ~3% of browning (vs. 40.73% and 2.45% in this study);
Chen [56] found that 34.1% of the global vegetated area showed a greening and 4.85% of
browning for LAI from MODIS during 2000–2017, while 22.42% of greening and 13.54%
of browning for LAI from AVHRR during 2000–2016. Furthermore, although the same
satellite-derived data (MODIS Terra-C6 EVI) were used, there were still differences in area
ratios of greening and browning between our study and the relevant studies, which might
be due to the following reasons: (1) different vegetation monitoring time range; (2) different
spatial resolution of EVI data; (3) different land cover data and starting reference year;
(4) different trend analysis methods.

Table 4. Comparison of global vegetation change trend results.

Time Range Index Datasets Spatial
Resolution Averaged Trend Greening

Area Ratio
Browning
Area Ratio References

1982–2011 NDVImax GIMMS3g 1/12◦ 0.0013 yr−1 ** - - [20]
1982–2013 NDVIgs GIMMS3g 1/12◦ 0.0012 yr−1 *** 48% * 8% * [54]

1982–2014 LAIgs GIMMS3g 1/12◦ 0.032 m2m−2yr−1

**
35% ** 4% ** [21]

1982–2015 NDVI GIMMS3g 1/12◦ - 50% ** 8% ** [55]LAI GIMMS3g 1/12◦ - 23% ** 15% **
1982–2016 LAI AVHRR 1/12◦ - 40.91% * 10.59% *

[56]2000–2017 LAI MODIS C6 500 m - 34.1% * 4.85% *
2000–2016 LAI AVHRR 1/12◦ - 22.42% * 13.54% *

2001–2015

NDVI MODIS
Terra-C6 0.05◦ 0.0022 yr−1 **** 23.1% ** 10.5% **

[24]
NDVImax

MODIS
Terra-C6 0.05◦ 0.0015 yr−1 **** - -

EVI MODIS
Terra-C6 0.05◦ 0.0028 yr−1 **** 22.8% ** 3.3% **

EVImax
MODIS
Terra-C6 0.05◦ 0.0023 yr−1 **** - -

2001–2013
NDVI MODIS

Aqua-C6 0.05◦ - 12.1% ** -

EVI MODIS
Aqua-C6 0.05◦ - 14.3% ** -

NDVI GIMMS3g 1/12◦ - 13.8% ** -

2000–2015
NDVI MODIS

Terra-C6 0.05◦ - ~16% ** ~5% **
[57]

EVI MODIS
Terra-C6 0.05◦ - 18.9% ** ~3% **

LAI MODIS
Terra-C6 0.05◦ - ~17% ** ~3% **

2000–2015 NDVI MODIS
Terra-C6 0.05◦ 0.0023 yr−1 **** 28.6% ** 5.4% ** [58]

2001–2018 EVI MODIS
Terra-C6 1 km 0.0022 yr−1 ** 40.73% ** 2.45% ** This study

EVImax
MODIS
Terra-C6 1 km 0.0030 yr−1 ** 18.16% ** 3.08% **

Notes: NDVImax and EVImax refer to the annual maximum NDVI and EVI, respectively, and unsubscripted ones represent the annual mean
values; NDVIgs and LAIgs refer to NDVI and LAI for growing season, respectively; **** p < 0.0001, *** p < 0.01, ** p < 0.05, * p < 0.1.
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4.2. Potential Causes Inducing Inconsistencies in Vegetation Change

Our study found that only 15.97% of the global vegetated area experienced a con-
sistent change (enhancement or degradation) in peak and mean growth of vegetation,
and 32.47% of the global vegetated area experienced inconsistent changes in peak and
mean vegetation growth. The first potential cause could be changes in plant phenology
or growing season induced by climate change in these areas. In some areas, the annual
EVImean showed an increasing trend while the annual EVImax remained unchanged and
even decreased, indicating that with time going on, the monthly EVI, which are larger
than the original annual EVImean, increased during 2001–2018, and in this case the growth
circle of vegetation might be prolonged. In contrast, for the areas with increased EVImax
but no significant change or decrease in EVImean, the growth circle of vegetation might
be shortened. This speculation can be supported by the consistent evidence for plant
phenological changes from in situ and satellite observations [59]. The earlier beginning of
the growing season and autumn postponement has been widely reported in Europe, North
America and China since the 1980s [60–63]. Moreover, with the stagnation of warming,
spring green-up advancement’s trend might have slowed down or even reversed since
the 2000s [64,65]. However, this speculation still is of great uncertainty due to the unclear
vegetation phenological information and its variations in recent 20 years, which needs to
be investigated in detail in further studies.

Plant phenology changes are determined by various biological and environmental
factors such as nutrient and water availability, temperature and photoperiod. Temperature
is generally regarded as one of the most critical controls of plant phenology through
multiple processes, such as inducing the plant endodormancy by cold temperature [66] and
breaking the ecodormancy by the accumulated warming [59]. For vegetation in pasture
regions, precipitation variation had a significant limiting effect on its productivity [67];
this might result in the inconsistency of peak and mean greenness due to variations of
annual maximum and minimum rainfall. What is more, the impact of climatic conditions
on vegetation growth is more complex due to the interactions with other environmental
and climatic factors [68].

In addition, anthropogenic activities, including land cover change and land use man-
agement, also could lead to the differences between annual peak and mean vegetation
variations. On the one hand, the conversion between different vegetation types might
directly result in the observed inconsistency between the peak and mean greenness, due
to the different responses to environmental changes determined by different vegetation
properties, such as thermal adaptability and photosynthetic efficiency [69]. For example,
crops have higher photosynthetic efficiency than other non-crops [20]. On the other hand,
land-use intensity and management could also explain the inconsistency largely. For
example, anthropic seasonal irrigation and fertilization could improve the peak green-
ness and productivity of croplands [20,56,70], but the annual mean greenness might not
enhance simultaneously.

4.3. Spatial Heterogeneity of Vegetation Growth Driven by Climate Change

Consistent with previous findings, we found that rainfall and temperature significantly
impact vegetation both in peak and mean growth [20,21]. However, except for precipitation
and temperature, vegetation growth was also found to be significantly correlated with
other climatic factors such as potential evapotranspiration and vapour pressure in our
study (Table 2). Furthermore, previous studies had neglected the spatial heterogeneity of
this response. Using the GWR model, we revealed the spatial pattern of each climatic factor
influencing vegetation variation. We found that not all regions had the strongest correla-
tion between vegetation change and precipitation and temperature, which were generally
considered to be the main climatic factors. For example, potential evapotranspiration con-
tributed dominantly to the trend of EVImax and EVImean over 6.96% and 7.54% of the global
vegetated area, respectively. Significant positive effects of potential evapotranspiration
occurred mainly in Brazil, Northern Europe and Northeast China, while adverse effects
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were mainly found in Africa (Figure 7). Vapour pressure had dominant contribution to the
trend of EVImax and EVImean in 12.56% and 8.95% of the global vegetation. The greening
induced by climate change in the Tibetan Plateau was mainly attributed to increasing
vapour pressure and temperature in this study (Figure 7), whereas that was rising in a
previous study [21].

4.4. Limitations and Further Directions

Data continuity and accuracy of the VIs products are critical to accurately detect subtle
changes in vegetation, which is important to the assessment of vegetation dynamics [12].
VIs are a kind of spectral vegetation index derived from satellite remote sensing, which
is calculated by spectral band reflectance [14]. Thus, unlike LAI, VIs cannot be directly
validated and calibrated continuously in time series by in situ measurements. A number of
comparisons have been made between different satellite-based VIs datasets [12,14,16,71,72]
and MODIS VIs data with improved technology, and no shifts of sensor is considered to
be superior to other products in terms of data temporal consistency and has been widely
used for reference data [10]. The latest MODIS Collection 6 (C6) VIs data providing several
algorithmic improvements and calibration adjustments were released for correcting the
negative influence of sensor degradation found in MODIS Collection 5 (C5) VIs data [17].
After release of MODIS C6 products, some studies began to evaluate differences between
C5 and C6 VIs both on a local and global scale to verify that C6 products had eliminated
effects of sensor degradation, and highlighted the need of re-analysing some previous
results based on MODIS C5 VIs products [17,24,73]. Therefore, we selected MODIS C6
data to examine global vegetation growth trend in this study. However, the differences
between MODIS EVI and NDVI were not sufficiently considered to reduce the uncertainty
in detecting trend analysis in this study. Although EVI can improve reflectance sensitivity
in dense vegetation areas, NDVI and EVI are generally regarded as two complementary
datasets for providing more effective assessment of global vegetation dynamics [24]. Thus,
it is necessary to evaluate the differences between the two datasets for monitoring vege-
tation dynamics using both EVI and NDVI data in the future. Moreover, research on the
climatic driving mechanism of vegetation dynamic should be combined with VIs and other
vegetation indicators, such as LAI and net primary productivity, which can be simulated in
the process-based models, because either non-spatial or spatial regression analysis cannot
explain the climate-driving mechanism from the ecological processes of vegetation growth
but can only provide a hint of correlation.

5. Conclusions

This study detected the trend of global peak and average vegetation growth during
2001–2018 and mapped the inconsistency in vegetation growth, and the climatic factors that
affected the inconsistency of vegetation growth were explored. The results showed that in
terms of EVImax, 18.16% of the global vegetated areas are greening and 3.08% are browning,
and in terms of EVImean, there are 40.73% and 2.45%, respectively. The most dramatic
greening of EVImax occurred mainly in those areas with cropland agricultural activities,
and the fastest degradation areas of EVImax were mainly grassland and savannas of Africa
and South America. Through mapping the consistency of global vegetation growth, it was
found that from 2001 to 2018, 32.47% of the global vegetated area experienced inconsistent
trends in EVImax and EVImean.

The SLM was proved to be more suitable than SEM and OLS in this study for spatial
regression at the global level. We found that precipitation and mean temperature had
a statistically significant (p < 0.05) positive correlation with EVImax and EVImean during
2001–2018, while potential evapotranspiration and vapour pressure had a statistically
significant negative correlation. The results of SLM indicated that there was spatial au-
tocorrelation in both EVImax and EVImean change, which means the changes in EVI were
correlated not only to these climatic factors but also to EVI variation in its adjacent areas.
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The SLM results only indicated a correlation between EVI changes and climatic drivers on
the whole but failed to reveal the spatial heterogeneity of climatic drivers.

The GWR model was used to explore the spatial heterogeneity of climatic drivers
influencing vegetation change by obtaining regression results for each spatial unit. The
results showed that the EVImax change was strongly influenced by precipitation in 14.02%
of the global vegetated areas during 2001–2018, followed by vapour pressure (12.56%),
minimum temperature (9.87%), mean temperature (9.10%) and potential evapotranspira-
tion (6.96%). In terms of the EVImean, the global vegetated areas were strongly affected by
mean temperature (17.36%) and precipitation (16.97%). In China, maximum temperature
and vapour pressure had opposite effects on EVImax in the north and south, and maximum
temperature and humid days also had opposite effects on EVImean.Due to the difference in
climatic conditions (arid or humid area) and vegetation types (cropland or grassland), the
responses of EVI to climate change were inconsistent. Climate change could affect vegeta-
tion characteristics by changing plant phenology, consequently rendering the inconsistency
between peak and mean greening. In addition, anthropogenic activities, including land
cover change and land use management, also could lead to the differences between annual
peak and mean vegetation variations.
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