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Abstract: Operationalization of sustainability assessments is necessary to promote the sustainable
development of agroecosystems. However, primarily, focus has been on the development of sus-
tainability assessment tools with less attention on whether these are suitable for adoption and
implementation in specific areas. This drawback could lead to inappropriate management guidance
for agricultural practices. Hence, three extensively used models, i.e., the Driver–Pressure–State–
Impact–Response (DPSIR) framework, ecological footprint (EF), and emergy analysis (EMA), were
applied to quantify the sustainability performance of the agroecosystems in 27 cities in the Yangtze
River Delta Urban Agglomeration (YRDUA), China, in 2016. The models were compared using the
Pearson correlation analysis and natural break method, to determine a more adaptive method for
agricultural sustainability assessments. The level of agricultural sustainable development of each city
varied according to the methodology considered for its calculation. Compared with the EMA model,
the DPSIR and EF models showed a better relationship (Pearson correlation coefficient of 0.71). The
DPSIR model more accurately represented regional rankings of the agricultural sustainability at the
municipality level due to its comprehensive consideration of multiple dimension factors and signifi-
cance for policy making. However, each methodology has its own contribution depending on the
study objectives. Hence, different models should be used for adequate determination of agricultural
sustainable development at different regional scales; this would also enable better implementation of
agricultural practices as well as policies in any given agricultural area for promoting the sustainable
development of agroecosystems.

Keywords: agricultural sustainability assessment; Yangtze River Delta Urban Agglomeration;
Driver–Pressure–State–Impact–Response framework; ecological footprint; emergy analysis

1. Introduction

Agriculture is the foundation of human survival and development, which provides
multiple ecosystem services, such as a food supply, environmental conditioning, and cul-
tural education, among others [1]. In the past half century, grain production has increased
significantly, mainly resulting from greater inputs of artificial auxiliary energy and other
technologies originating from the “Green Revolution” [2], which unfortunately have major
global environmental impacts: land clearing and habitat fragmentation threaten biodiver-
sity, while global greenhouse gas (GHG) emissions and fertilizer application can harm
marine, freshwater, and terrestrial ecosystems, among other factors [3]. The agroecosystem
itself also faces challenges due to climate change, population explosions, and ecosystem
degradation [4]. Agricultural sustainability is defined as practices that meet current and fu-
ture societal needs for food and fiber, for ecosystem services, and for healthy lives, and that
do so by maximizing the net benefit to society when all costs and benefits of the practices
are considered [2]. Agricultural practice likes the Reduce–Reuse–Recycle (“3R”) principle
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is encouraged for sustainable development of agroecosystem, e.g., a small low-pressure
irrigation network, recycling of waste resources, and the use of clean energy and crop straw
for fermenting biogas [5]. As the embodiment of sustainable development ideas in the
agricultural field, sustainable agriculture has been increasingly highlighted in both policy
agendas and the capital market in recent years [6].

Research on agricultural sustainability assessments can benefit both farming practices
and agricultural policy making, which are also conducive to promoting regional economic
and social development [7]. Comprehensive quantification methods based on compos-
ite indicators, which refer to multi-dimensional (i.e., social, economic, and ecological)
and multi-functional (e.g., food security, biodiversity, natural resources conservation, and
landscape maintenance) perspectives, are widely used for sustainability assessments in
agriculture, aiming to implement integrative analysis and explore the actual status of agri-
cultural sustainability [8]. These methods include the Sustainability Assessment of Food
and Agriculture Systems Framework (SAFA) [9], Sustainability Assessment Adaptive and
Low-input Tool (SALT) [10], and Sustainability Assessment of Farming and the Environ-
ment framework (SAFE) [11], among others. The Driver–Pressure–State–Impact–Response
(DPSIR) framework was developed in the late 1990s and adopted by the Organization of
Economic Co-operation and Development (OECD) [12]. As the most popular conceptual
indicator framework, DPSIR has yielded valuable contributions in terms of organizing
environmental indicators based on causality and providing beneficial references to decision
makers [13]. DPSIR has also been widely utilized to analyze the interacting processes of
human–environmental systems, including its application for the assessment of agricultural
sustainability and policy making [14,15]. The Emergy method (EMA), originally developed
by system ecologist H.T. Odum and followers in the late 1980s, is now becoming more
popular for its biophysical perspective of a complex ecosystem [16]. The basic idea behind
EMA is to quantify all forms of resources by applying a common metrological reference,
referred to as the solar equivalent energy [17]. Until now, various systems have been
evaluated by EMA including agroecosystems. Additionally, the emergy ratios and indices
of EMA have been introduced to assess various aspects of the sustainability for farming sys-
tems [18], e.g., evaluations of food security and sustainable agriculture [19], comprehensive
evaluations and optimizations of agricultural systems [5], and assessments of the efficiency
and sustainability of wheat production systems [20], among others. Another widely used
method for sustainability assessment is the ecological footprint (EF), which was originally
proposed by Rees and later developed by Wackernagel et al. [21]. The EF model allows for
the assessment of the impact that human beings have on the environment in terms of an
ecologically productive area, which is necessary to sustain their lives and activities [22].
Numerous studies have assessed the environmental sustainability of national cropping
systems [23], cropland use sustainability [24], and the supply and demand balance of the
ecological carrying capacity for arable land [25].

Method optimization and model integration for a more accurate sustainability analysis
are also a current research focus. The localization of the yield factor [26] and equaliza-
tion factor [27] in the EF model can more effectively evaluate research objects at different
spatio-temporal scales. Previous studies have used the Net Primary Production (NPP)
as a substitute for the agricultural output to solve difficulties associated with statistical
data collection and further improve the application performance of the EMA method [28].
The DPSIR and EMA models have been integrated with Geographic Information System
(GIS) to investigate the environmental impacts and sustainability of high-altitude agricul-
ture [29]. The emergy EF model introduces the concept of emergy density and translates
the production and consumption of different types of resources into a common unit area,
offering a true measure of the carrying capacity of the EF, as well as providing a clear
outline of the human impact on Earth and the consumption of natural capital [30].

A wide variety of methods have been developed and improved to assess the sustain-
ability of agroecosystems [31]. However, the following doubts arise: which approach can
be considered more robust and suitable to reveal the agricultural sustainability for the
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specific research objects? Can these tools provide an accurate explanation for the sustain-
able performance of specific areas? To address these questions, the focus of this study was
to assess the agricultural sustainability of the Yangtze River Delta Urban Agglomeration
(YRDUA), with comparisons of the results obtained by three widely used models, i.e., the
DPSIR framework, EF, and EMA, aiming to identify a more accurate method to reveal
the true status of the sustainable level of the agroecosystem. In addition, to ensure that
practical outcomes were achieved through the different models, we attempted to enhance
the accuracy and overcome uncertainties previously reported during the calculations. The
agricultural ecosystem of the YRDUA was considered as a case study due to its strategic
importance as one of the main producing areas of bulk agricultural products in China.

The remainder of this paper is presented as follows. Section 2 presents the materials
and methods. Section 3 describes the results, which are discussed in Section 4. Finally, the
main conclusions of this study are presented in Section 5.

2. Materials and Methods
2.1. Study Area

The YRDUA, located downstream of the Yangtze River and characterized by a subtrop-
ical monsoon climate zone, is one of the regions with the most dynamic economy, highest
degree of openness, and strongest innovation ability in China (Figure 1). The YRDUA has
a total area of 225,000 km2 and encompasses 27 cities, including Shanghai, nine cities in
Jiangsu Province, nine cities in Zhejiang Province, and eight cities in Anhui Province. As an
important region in the middle and lower Yangtze River floodplain, the abundant natural
resources and sound agricultural infrastructure have allowed the YRDUA to become a
major grain-producing area and agricultural commodity base; in addition, the YRDUA
is also of great significance and strategic importance to ensure national food security in
China. In the study area, the majority of crop planting is grain, mainly including rice, wheat
and maize, oil crops represented by rape, and vegetables, which are also characterized by
large-scale planting.
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Figure 1. Location and land use pattern of the Yangtze River Delta Urban Agglomeration (YRDUA)
in 2020.

2.2. Model Description and Data Preparation

Most of the data available used in this study were obtained from the Statistical Year-
book, Bulletin of the Third National Agricultural Census, and Bulletin of Ecological Environ-
ment, which were compiled by the central government and subordinate Chinese ministries.
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The Third National Agricultural Census was conducted in 2016; compared with the
Statistical Yearbook, it provides more detailed statistical data referring to agricultural prac-
tices, such as the level of high-efficient water-saving irrigation, the quality of agricultural
labor, and the level of facility agriculture, among others, which can reflect the comprehen-
sive status of agricultural sustainability in the YRDUA. Based on this, we selected 2016 as
the time period for our study.

2.2.1. DPSIR Model

The indicator selection and determination of the weight coefficient are the fundamental
considerations for an appropriate sustainability assessment [32]. Several indicator selection
criteria were provided in the literature. The fundamental consideration for the indicator
selection and assignment was the causal relationships between the DPSIR sectors, i.e., the
basic causal chain linkages from drivers to response and back to the drivers. Additionally,
we considered indicator representativeness, independence, data availability, adaptability,
and measurability [33,34]. In this study, a total of 24 indicators were selected from multi-
dimensions, including economic–social–ecological aspects, to establish a comprehensive
framework for assessing the performance of agricultural sustainability (Table 1).

Table 1. Application of Driver–Pressure–State–Impact–Response (DPSIR) model to agricultural sustainability assessment in
the Yangtze River Delta Urban Agglomeration (YRDUA).

Target Layer Criterion Layer Indicator Layer Combined Weight

Agricultural
sustainability
assessment of
the YRDUA

Driver (D)

1 Natural population growth rate (%) 0.0247
2 Urbanization level (%) 0.0298
3 Disposable income between urban and rural residents (%) 0.0354
4 Per capita grain possession (kg) 0.0343

Pressure (P)

5 Level of fertilizer use (kg ha−1) 0.0510
6 Consumption of pesticides (kg ha−1) 0.0583
7 Plastics film for agricultural use (kg ha−1) 0.0546
8 Agricultural water consumption (m3 ha−1) 0.0440

9 Electricity consumption of per unit of agricultural added value
(Kwh yuan−1) 0.0354

State (S)

10 Per capita area of cultivated land (ha per−1) 0.0282
11 Multiple cropping index (%) 0.0399
12 Area ratio of high and medium quality of cultivated land (%) 0.0641
13 Effective utilization coefficient of irrigation water (%) 0.0361
14 Forest coverage rate of city (%) 0.0423

Impact (I)

15 Grain production of per unit area of cultivated land (kg ha−1) 0.0412

16 Agricultural added value of per unit area of cultivated land
(yuan ha−1) 0.0447

17 Agricultural value added of per labor (yuan per−1) 0.0515
18 Farmland abandonment (%) 0.0331

Response (R)

19 Total power of agricultural machinery (Kw ha−1) 0.0307
20 Rate of cultivated land using water-saving irrigation (%) 0.0469
21 Application of facility agriculture (%) 0.0536
22 Level of large-scale modern agriculture (%) 0.0454
23 Quality of agricultural labor (%) 0.0412
24 Proportion of R&D investment in agriculture (%) 0.0335

Indicators should be standardized before the data are analyzed to eliminate the effects
caused by different dimensions and ensure accurate analysis [35]. We standardized the
indicators between 0 to 1. The transfer functions are as follows:

y =
x − min(x)

max(x)− min(x)
(1)
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y =
max(x)− x

max(x)− min(x)
(2)

where y is the normalized value of a participating indicator x; max(x) and min(x) are the
maximum and minimum values of a participating indicator, respectively. For a positive
and a negative indicator, Equations (1) and (2) were used for calculation, respectively.

To determine the indicator weight, a subjective weight calculated using the analytic
hierarchy process (AHP) and an objective weight calculated by using the entropy weight
method were combined. The results were synthesized according to the minimum relative
information entropy principle to obtain a more reasonable weight of each indicator.

The main idea of the AHP is to decompose complex problems into sub-problems
and then classify these sub-problems by dominance relationship and construct an orderly
hierarchy. The AHP makes it possible to facilitate multicriteria decision-making with
respect to various assessments and convert qualitative judgments into numerical values [36].
The following judgment matrix was used to calculate the priorities of the indicator:

A =
[
aij
]
=


1 a12 · · · a1n

a21 1 · · · a2n
...

...
. . .

...
an1 an2 · · · 1

 =


1 a12 · · · a1n

1/a12 1 · · · a2n
...

...
. . .

...
1/a1n 1/a2n · · · 1

 (3)

where aij is the pairwise comparison rating between indicator i with indicator j.
To estimate the relative weights of the indicator in this matrix, the priority of the

indicator was estimated by computing the eigenvalues and eigenvectors as follows:

A·W = λmax·W (4)

where W is the eigenvector of the matrix A, and λmax is the largest eigenvalue of the
matrix A.

The consistency of the matrix A was achieved by examining the reliability of judg-
ments in the pairwise comparison. The consistency index CI and the consistency ratio CR
are defined as Equations (5) and (6), respectively.

CI = (λmax − n)/(n − 1) (5)

CR = CI/RI (6)

where n is the number of indicators being compared in this matrix, and RI is the random index.
After examination, the CR value of the matrix A set in this research was less than 0.1,

which is considered to be in good agreement (Table 2).

Table 2. Test of random consistency.

Criterion
Layer

Driving
Layer

Pressure
Layer

State
Layer

Impact
Layer

Response
Layer

n 5 4 5 5 4 6
RI 1.12 0.89 1.12 1.12 0.89 1.26
CR 0.004 0.003 0.012 0.074 0.009 0.038

Note: CI is the consistency index; RI is the random index; CR is the consistency ratio, which is used to determine
the consistency of the judgment matrix, a CR value of 0.1 or less is considered acceptable; n is the number
of indicators.

Entropy indicates the extent of the uncertainty of a system, and it is suited for mea-
suring the relative importance of the contrast indicator to represent the average intrinsic
information transmitted for decision-making; hence, the entropy value can be used to
calculate the objective weights of the index system [37].
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Assume that there are m objects for evaluation and each has n evaluation indicators,
which form raw data matrix R, the matrix as follows:

Rij =


x11 x12 · · · x1m
x21 x22 · · · x11

...
...

...
...

xn1 xn2 · · · xnm

 (7)

where j = 1, 2, . . . , m; i = 1, 2, . . . , n.
The matrix R was normalized for each indicator by Equations (1) and (2), and decision

matrix Y was obtained, the matrix is as follows:

Yij =


y11 y12 · · · y1m
y21 y22 · · · y11

...
...

...
...

yn1 yn2 · · · ynm

 (8)

The entropy Hi of each indicator yi was calculated using Equation (9); the values
fij were calculated using Equation (10). The entropy weight w2i of each indicator yi was
calculated by Equation (11).

Hi = −k
n

∑
j=1

fij ln fij (9)

fij = yij/
m

∑
j=1

yij (10)

w2i =
1 − Hi

n − ∑n
i=1 Hi

(11)

where k = 1/ ln m.
The entropy-weight method emphasizes the objective weights of the index system,

while the AHP may be highly subjective because of the knowledge and experience limita-
tions of the designated experts. The two weights computed using the AHP and entropy
weight method, respectively, can be synthesized according to the minimum relative infor-
mation entropy principle to obtain a more reasonable weight of each indicator [38]. The
final combined weight was calculated as follows:

Wi =
(w1i · w2i)

0.5

∑m
i=1 (w1i · w2i)

0.5 (12)

where i = 1, 2, . . . , m, w1i is the indicator weight calculated using the AHP, w2i is the
indicator weight calculated using the entropy weight method, and Wi represents the
combined weight of the indicator.

Finally, we introduced the Sustainable Development Index (SDI) to measure the level
of agricultural sustainability in the study sites. The SDI was calculated as follows:

SDIj =
n

∑
i=1

yji·wi (13)

where SDIj is the agricultural sustainable development index of city j, n the number of
evaluation indicators, yji represents the standardized value indicator i of city j, and wi is
the combined weight of the indicator i
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2.2.2. EF Model

To understand the consumption of resources in agricultural practices, the EF of pro-
duction can be evaluated based on a bottom-up approach, which establishes a component-
based model of the EF [39]. For plant-based primary agricultural products, the footprint
includes two types of components: cultivated land ecological footprint EF1 and carbon foot-
print EF2. The cultivated land footprint can be computed by the cultivated land footprint
coefficient and the output of agricultural products. The carbon footprint can be obtained
based on the carbon emissions factor of the agricultural inputs and the material quality of
the agricultural inputs. These equations can be expressed as follows:

EF1 = EFI1·H = ∑
1
Y
·EQF·H (14)

EF2 = ∑ Mk·Ek·v (15)

EF = EF1 + EF2 (16)

where EFI1 represents the cultivated land footprint coefficient of a certain type of agri-
cultural product, H is the output of that agricultural product, Y is the average national
yield of that agricultural product, EQF is the equivalence factor, which is a scaling factor
required to convert a specific land-use type into a universal unit of a biologically productive
area. The methods reported in Liu [27] were adopted to calculate the equivalence factor
for the EF in China and its provinces based on the NPP. Here, M represents the material
quality of a certain type of agricultural input, k is represents the types of agricultural input,
E represents the carbon emissions factor of the agricultural input, and v represents the
forest area demand for carbon sequestration when considering the carbon absorption of
the ocean; v = 0.2563 ghm2/t CO2 was used in this study.

The agricultural ecological carrying capacity can be defined as the largest supply of
natural resources and the capacity of the ecological environment to support sustainable
agricultural development within a certain time and space. In our calculations, 12% [40] of
the ecological carrying capacity was reserved for the protection of regional biodiversity;
based on this, we finally determined the ecological surplus or ecological deficit. The
formula can be expressed as follows:

EC = A·r·y (17)

where EC represents the regional agricultural ecological carrying capacity, A is the area of
cultivated land, r is the equivalence factor, and y represents the yield factor, which refers to
calculations reported in Shi [26].

To assess the ecological carrying capacity supply and demand balance in the agroe-
cosystem, we introduced ecological supply and demand balance index (EI) and classified
the cities into different levels of agricultural sustainability [25] (Table 3).

Table 3. Evaluation criteria for the ecological carrying capacity supply and demand balance for the
agroecosystem in the Yangtze River Delta Urban Agglomeration (YRDUA).

Types Agroecosystem Ecological Carrying Situation EI

Agroecosystem ecological affluent Affluent 1.1 < EI

Agroecosystem ecological balance Balance 1 < EI ≤ 1.1
Deficit 0.9 < EI ≤ 1.0

Agroecosystem ecological deficit Overload 0.7 < EI ≤ 0.9
Severe overload EI ≤ 0.7

Note: EI is the ecological supply and demand balance index.
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2.2.3. EMA Model

The EMA model measures all forms of energy, resources, and human services based on
the solar energy equivalent, which allows an analysis of all aspects of an examined system
in an integrated manner, providing a biophysical perspective of various systems [16]. The
main analysis steps were as follows. (1) Collect raw data on the natural environment,
society, and economy, which are related to agricultural practices in the study area. (2) Set
the boundaries of the system, and draw an emergy system diagram of the agroecosystem
to identify major flows, which were used to sustain the production and consumption
processes within the system (Figure 2). (3) Compile the emergy analysis table and classify
the emergy flows into renewable inputs, locally non-renewable input, purchased resources,
outputs, and waste emergy (Table 4). In this study, different flows were translated into solar
emergy through multiplying by the related unit emergy value (UEV) based on a unified
geobiosphere emergy baseline of 12.0 × 1024 sej y−1 from the most recent studies; emergy
transformity is mainly based on the studies of Liu [41]. We also follow the suggestions
reported in Brown [42] to calculate the global renewable sources, which can prevent
double counting. (4) Calculate the related emergy-based indicators to uncover the resource
utilization structure and overall sustainability of the system (Table 5).
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Table 4. Emergy analysis table of agroecosystem in the Yangtze River Delta Urban Agglomeration
(YRDUA).

Items Unit UEV (sej/unit) References for UEV

Global Tripartite
1 Solar emergy j 1.00 × 100 (Odum, 1996)
2 Earth cycle emergy j 4.90 × 103 (Odum, 1996)
Sum of Tripartite
Secondary and Tertiary Sources
3 Rain chemical emergy j 2.31 × 104 (Odum, 1996)
4 Rain geopotential emergy j 1.33 × 104 (Odum, 1996)
5 Wind emergy j 1.24 × 103 (Odum, 1996)
Largest of 2nd and 3rd
Renewable Input (R, locally available)
Nonrenewable Input (N0, locally available)
6 Topsoil losses j 9.40 × 104 (Brown and Bardi, 2001)
Purchased Renewable Resources (FR)
7 Human labor (10%) sej/h 5.72 × 1013 (Liu, 2018)
8 Irrigating water sej/kg 2.13 × 104 (Liu, 2018)
9 Seed g 9.07 × 108 Coppola(2009)
Subtotal
Purchased Nonrenewable Resources (FN)
10 Human labor (90%) sej/h 5.72 × 1013 (Liu, 2018)
11 Electricity j 2.21 × 105 (Liu, 2018)
12 Nitrogen fertilizer g 4.83 × 109 (Odum, 1996)
13 Phosphate fertilizer g 4.95 × 109 (Odum, 1996)
14 Potash fertilizer g 1.40 × 109 (Odum, 1996)
15 Compound fertilizer g 3.56 × 109 (Odum, 1996)
16 Plastic sheeting g 4.83 × 108 (Brown and Bardi, 2001)
17 Diesel j 8.38 × 104 (Odum, 1996)
18 Pesticide g 2.03 × 109 Lan et al., 2002
19 Capital investment ¥ 9.23 × 1011 Zhao et al. (2019)
Subtotal
Output (E)
21 Paddy rice j 4.56 × 104 Lan et al., 2002
22 Corn j 2.70 × 104 Ulgiati et al. (1993)
23 Wheat j 6.80 × 104 Lu et al. (2010)
24 Soybean j 8.30 × 104 Ulgiati et al. (1993)
25 Potato j 8.30 × 104 Lu et al. (2010)
26 Peanut j 8.60 × 104 Ulgiati et al. (1993)
27 Rapeseed j 8.60 × 104 Ulgiati et al. (1993)
29 Cotton j 1.90 × 104 Ulgiati et al. (1993)
30 Vegetables j 2.70 × 104 Lu et al. (2010)
Subtotal
Wastes Emergy (W)
31 Rice straw j 4.96 × 104 Sui et al. (2006)
32 Corn stalk j 4.96 × 104 Sui et al. (2006)
33 Wheat stem j 4.96 × 104 Sui et al. (2006)
34 Soybean stem j 4.96 × 104 Sui et al. (2006)
35 Rape stem j 4.96 × 104 Sui et al. (2006)
Subtotal
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Table 5. Emergy evaluation indicator system of the agroecosystem.

Emergy Indicators Evaluation
Expression Meaning

Local renewable environmental
resources R

Renewable emergy flows from local
resources, such as sunlight, rain,
wind, and so on

Local nonrenewable
environmental resources N0

Slow-renewable resources used in a
nonrenewable manner such as soil

Purchased renewable resources FR Renewable resources and service
from artificial input

Purchased nonrenewable
resources FN Nonrenewable resources from

artificial input

Total energy input U = R + N0 + FR +
FN Emergy flows of total input

Total energy output Y = E + W Total energy of products

Emergy yield ratio EYR = Y/(FR + FN) A measure of ecological benefits of
agricultural system

Environmental loading ration ELR = (N0 + FN)/(R
+ FR)

A measure of the potential stress of
the agricultural system on the local
environment

Emergy sustainability index ESI = EYR/ELR A measure of the sustainability of the
production system

2.2.4. Results Comparison Analysis

A normalization processing was used to realize the results’ comparability of the three
models with Equation (18); the assessment results were mapped to [0,1] and then analyzed
by the Pearson correlation test for further investigation, aiming to explore the relationships
among the different models.

y =
xi

∑27
i=1 xi

(18)

where y represents agricultural sustainability evaluation score after normalization of each
city, xi is raw score of agricultural sustainability calculated by the three models, and i is the
number of cities.

Finally, for the exploration of the different assessment results, the normalized assess-
ment results of the three approaches are conducted with Pearson correlation analysis based
on SPSS 26.0 and cluster analysis by using the natural break method based on ArcGIS 10.2,
respectively.

3. Results
3.1. DPSIR Model

Figure 3 shows the Sustainable Development Index (SDI) of the agroecosystem in
each city. We observed that, at the municipal level, Huzhou has the highest level of
agricultural sustainability, with an SDI value of 0.57. Changzhou, Jiaxing, and Taizhou are
also characterized by preferable performance, while Hefei and Tongling show the lowest
level, with an SDI value of 0.39. Cities, such as Shanghai, Nanjing, Suzhou, Jinhua, and
Ma’anshan, are relatively close with an SDI near to 0.5, which are all characterized by
a middle level. At the provincial level, in general, expect for Zhoushan, Zhejiang has
the highest overall level of agricultural sustainability, followed by Jiangsu and Shanghai;
Anhui was relatively low, apart from Wuhu and Ma’anshan.
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DPSIR was proposed to show the cause–effect relationships between the environ-
mental and human systems [20]. For further analysis of this interaction, the scores of the
criterion layer of each city were normalized (Z values) to explore the influence that the
“Driver–Pressure–State–Impact–Response” has on agricultural sustainability (Figure 4).
The “Driver” is the fundamental driving force(s) behind changes in the agroecosystem.
Taking Nanjing as an example, urban sprawl may lead to the occupation of cultivated
land by artificial surfaces. Moreover, the enlargement of the urban–rural income gap will
inevitably accelerate the shift in the labor force from agriculture to the manufacturing
and service sectors in urban areas, resulting in a decreasing investment in agriculture.
Therefore, the subsystem of “Driver” scores relatively low. “Pressure” reflects the adverse
effect that human activities have on the agricultural ecosystem. For examples, cities, such
as Wuxi and Shanghai, which have a higher input of industrial auxiliary energy, including
pesticides, fertilizers, and plastics film, among others, have placed greater environmental
pressure on the agroecosystem. “State” refers to the status of the agricultural resource
quality, resource utilization efficiency, and ecological environment, among others. The
lower scores for Zhenjiang and Hefei may be attributed to a deficiency of high–medium
quality cultivated land and forest coverage. The quality of cultivated land is of great
significance for sustainable agricultural development. The forest coverage rate is also
important for soil and water conservation. For the “Impact” layer, Zhoushan is an island
city; due to its mountain terrain and limited land resources, Zhoushan has a higher level of
farmland abandonment and a lower agricultural value added per labor, which partially
restricts the development of agriculture. “Response” reflects the feedback measures taken
by humans to achieve sustainable agricultural development. In general, Shanghai, Jiangsu,
and Zhejiang had a high level of economic development, agricultural modernization, and
labor quality, such that the response subsystem scores were also relatively high.
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3.2. EF Model

As shown in Figure 5, the results reveal that the agricultural EF of most cities exceeded
their ecological carrying capacity, which manifested as an ecological deficit. The value
of the agricultural EF in each city is associated with the area of cultivated land. Thus,
larger cultivated land areas always result in more demand for the input of pesticides,
fertilizers, and agricultural films, among others, which will, in return, generate a high EF.
Yancheng shows the highest EF value, which has a total area of 668.2 thousand hectares
of cultivated land, followed by Nantong and Taizhou. Moreover, Yangzhou, Hefei, and
Chuzhou are relatively close together. However, Chuzhou has a higher ecological carrying
capacity value, which indicates that the agricultural sustainability of Chuzhou is the highest
among those three cities. As mentioned previously, due to limited cultivated land resources,
Zhoushan has the lowest value for both the agricultural EF and ecological carrying capacity.

The EI was calculated to measure the pressure that human activity places on the
agricultural ecosystem (Figure 6). There are significant differences in the EI values of each
city, especially Chizhou, Tongling, and Anqing, with EI values of less than 0.7, which
indicate that these cities are in a state of severe ecological overload. The agricultural
practices in these cities have already caused a negative impact on the agroecosystem,
such that we must urgently adjust human behavior to implement an environmentally
friendly mode of agricultural production. In addition, cities, such as Shanghai, Nanjing,
Wuxi, and Suzhou, are characterized by a state of ecological overload, which indicates
that the agroecosystem of these cites also faces serious environmental pressure. Moreover,
Wenzhou, Wuhu, and Chuzhou show an ecological deficit with EI values between 0.9 and
1.0. In contrast, Hangzhou and Ma’anshan are in a state of ecological balance. However, we
note that there are only five cities that show ecological affluence, i.e., Changzhou in Jiangsu
and Ningbo, Huzhou, Shaoxing, and Taizhou in Jiangsu. At the provincial level, Zhejiang
shows a high overall level of agricultural sustainability, expect for Zhoushan, followed by
Jiangsu, Shanghai, and Anhui, which have a relatively low overall sustainable level in the
agriculture ecosystem.
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Figure 5. Ecological footprint and carrying capacity analysis of agroecosystem in the Yangtze River
Delta Urban Agglomeration (YRDUA).
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3.3. EMA Model

The emergy yield ratio (EYR) is an indicator defined as the total emergy output
divided by the total purchased emergy input from outside the system. The EYR represents
the economic output capacity of the system. A higher EYR value represents greater system
benefits [5]. As shown in Figure 7, there are significant differences in the EYR value of
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each city. Ma’anshan and Chizhou achieved higher EYR values, reaching 7.2 and 6.8,
respectively, followed by Anqing, Zhenjiang, and Taizhou. Hangzhou, Ningbo, Jinhua,
and Taizhou have relatively low EYR values, while Zhoushan has the lowest EYR value
at 1.1. At the provincial level, compared with Zhejiang and Shanghai, Anhui and Jiangsu
have a higher level of EYR. Cities in the northern area of Jiangsu (Subei), such as Taizhou
and Yangzhou, have higher EYR values than cities in the southern area (Sunan), such as
Nanjing and Suzhou. The EYR of Ma’anshan and Chizhou are also higher than Hefei and
Wuhu. The EYR of economically developed cities was relatively low in general; there were
also no comparative advantages from agricultural investment and market competitiveness
in these cities.
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Figure 7. Emergy-based indicators analysis of agroecosystem in the Yangtze River Delta Urban
Agglomeration (YRDUA).

The environmental load ratio (ELR) is the ratio of the total non-renewable resource
inputs to the total renewable resource inputs. A higher ELR value indicates a stronger
intensity of non-renewable resources utilization and greater environmental pressure faced
by the system. When the ELR is higher than 5 for an extended period, the system may
exert excessive pressure on the surrounding environment and cause irreversible functional
degradation of the environmental system [43]. As shown in Figure 7, Shaoxing has the
highest ELR level of over 5.0; Chizhou and Jiaxing are also near the threshold value.
Therefore, we must optimize the resource utilization structure to reduce the existing
environmental pressure in these cities. Cities, such as Nanjing, Zhenjiang, and Ma’anshan,
are in the low ELR group, which indicates their higher dependence on renewable resources
in agricultural practice. At the provincial level, Zhejiang has the highest ELR, followed by
Anhui, whereas Jiangsu and Shanghai show low ELR values.

The emergy sustainability index (ESI) refers to the ratio of EYR to ELR; it is a key
indicator that reflects the sustainable development level of the system. As the ESI is
a more comprehensive indicator, it accounts for both the ecological compatibility and
economic compatibility [17]. When the ESI is higher than 1.0, the production process
of the system is considered sustainable [20]. As shown in Figure 8, Ma’anshan has the
highest level of agricultural sustainability, followed by Zhenjiang. The ESI of Nanjing,
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Nantong, Taizhou, and Chizhou is generally near 2, whereas Zhoushan shows the lowest
ESI. Moreover, Taizhou and Jinhua also have lower ESI values of less than 1.0, which
indicates the unsustainable development status of the agroecosystem in these cities. At the
provincial level, there are significant differences in the ESI; the ranking of the agricultural
sustainability is Jiangsu, Anhui, and Zhejiang, with Shanghai at the middle level. The ESI
value of most cities in Jiangsu and Zhejiang exceed 1.0, which indicates that these cities
show better performance in agricultural sustainability.
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Yangtze River Delta Urban Agglomeration (YRDUA).

3.4. Comparison of the Three Models

For a comparative examination of the three models, the Pearson correlation coefficient
analysis using the SPSS 17.0 software and natural breakpoint classification method based
on ArcGIS 10.2 were applied to explore the different assessment results. Compared with the
EMA model, the EF and DPSIR models exhibited a positive correlation, with a correlation
coefficient of up to 0.71 (Table 6), despite adopting entirely different concepts to determine
the agricultural sustainability. Furthermore, as shown in Figure 9, the relative difference in
the agricultural sustainability among the 27 cities evaluated by the first two models is also
smaller than the EMA model.

However, all three models showed partial consistency at reflecting the relative level of
agricultural sustainable development of cities in the same province: Huzhou in Zhejiang
Province and Ma’anshan in Anhui Province had the highest value in their respective
provinces, but this regularity was not significant (Figure 9).

Table 6. Pearson correlation analysis of the results by multi-model.

DPSIR Model EF Model EMA Model

DPSIR model 1.00 - -
EF model 0.71 (P < 0.01) 1.00 -

EMA model 0.25 (P = 0.902 > 0.05) −0.28 (P = 0.151 > 0.05) 1.00

Note: Driver–Pressure–State–Impact–Response (DPSIR) model; ecological footprint (EF) model; emergy
analysis (EMA) model.
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Figure 9. Result comparison of agricultural sustainability evaluation based on multi-model in the
Yangtze River Delta Urban Agglomeration (YRDUA).

The natural break method is a statistical method based on the numerical statistical
distribution law, which can maximize the difference between classes [44] by taking a
cluster analysis of the assessment results of each model. The cities were separated into six
groups according to the sustainable level of the agroecosystem. The results reveal that the
DPSIR and EF models also have better consistency at reflecting agricultural sustainability.
Specifically, Zhejiang and Jiangsu showed a high overall level of agricultural sustainability,
especially in Changzhou, Huzhou, and Taizhou, with Shanghai at the middle level. Anhui
had a low sustainable level, expect for Ma’anshan and Wuhu. However, the EMA model
yielded different results; the ranking of the agricultural sustainability was Jiangsu, Anhui,
Shanghai, and Zhejiang (Figure 10).
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4. Discussion
4.1. Comparative Analysis with the Literature

In comparative studies of sustainability assessment tools, early attempts to compare
the EF and EMA models were applied to agricultural sustainability [45], regional sustain-
able development [46], and carrying capacity evaluations of a city [47]. Although they
adopt entirely different concepts to determine the system status, the two methods yield
similar results. Different from our study, compared with the environmental sustainability
index, which is based on a multi-indicator decision-making integrated framework, the EF
and EMA models exhibited better relationships [48]. However, other studies reported dif-
ferent conclusions. The EMA model may be considered more eligible than the EF model to
represent the environmental load when assessing agricultural sustainability, because it con-
siders the biosphere as the system boundary and accounts for all natural and human-made
sources as supplying resources and absorbing residues [49].

These different conclusions are due to various reasons. First, for the same model,
differences in the calculation methods and parameter selection may lead to different
results, e.g., using the component-based method or compound method to quantify the
EF in the EF model, the choice of UEV in the EMA model, and indicator selection or
weight determination in the DPSIR model. In contrast, using an appropriate methodology
according to purpose of the research is crucial. For the sustainability assessment of a
certain system, the model should reflect comprehensive aspects, such as the integration
of ecological and economic dimensions, the long-term resilience of a system, and the
consideration of both extensive and intensive properties [50].

4.2. Uncertainty Analysis of the Three Models

DPSIR is a multi-criteria decision-making (MCDM) method that integrates economic,
social, and natural systems into a systematic approach. For sustainability assessment based
on indicators, its uncertainty partially derives from the indicator selection and weight
determination. There are a number of methods for indicator weight determination, such
as the analytic hierarchy process (AHP), entropy-weight method, principal component
analysis (PCA), and data envelopment analysis (DEA), as well as a combination of these
methods for a more reasonable indicator of the weight. The selection of different methods
is likely to increase the uncertainty of the assessment results. In contrast, weaknesses, such
as focusing on the causal chain, rather than addressing complex interrelationships in the
real world and ignoring temporal and spatial scale issues have also been areas of criticism
for the DPSIR model [51].

The EF model is based on the comparison of “consumption” versus “resources” to
identify the sustainable status of the research objectives. It has been used extensively by
numerous societies and the scientific community mainly due to its easy-to-understand
manner of expressing the final results: hectares of land. The EF model has also been
simultaneously criticized for its simplicity and non-use of sub-indicators. The equivalence
and yield factors are important parameters in the EF model and their accuracy directly
affects the reliability of the calculation. The localization of the two parameters can better
reflect the true status of regional agricultural sustainable development. However, one
evident imperfection in the EF model is the minimal use of information associated with the
sustainability [48].

The ability to assess energy, matter, and information in equal terms renders EMA
an attractive tool to perform sustainability evaluation of all types of systems. However,
its acceptance still faces several challenges and criticism. A database with transformity
values is not available, such that different studies assume different transformity values
for the same resource [50]. The EMA model also presents other limitations to its use,
some of which are intrinsic to its nature. The ESI prefers more renewable resources input,
such as rain, wind, and sun, which are essential for agricultural production and natural
vegetation to perform photosynthesis. However, the current monetary market does not
account for these resources, as they are considered free and have not yet reached the
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status of scarcity [49]. The EMA model also ignores the differences in the scientific and
technological levels, and land productivity, such as the education level of the labor force
and technological investments in crop seeds [52]. Moreover, emergy analysts have recently
devalued the importance of uncertainty analysis in the EMA model, which will inevitably
impact its validity [53].

Another weakness of these three models is that none of them considered different
resources used in agriculture, e.g., botanical pesticides or chemical pesticides, organic
fertilizers, or synthetic fertilizers. The different ways of producing these sources may
influence the agricultural impact on environment. Organic agriculture has often been
promoted as more sustainable than conventional agriculture [5]. Additionally, all the
three approaches fail to quantify the indirect effects of agricultural impacts. E.g., water
pollution by chemical pesticides, global greenhouse gas (GHG) emissions, and freshwater
eutrophication result from excessive use of chemical fertilizers [3]. These indirect factors
affect the sustainability of the agroecosystem.

4.3. Adaptability Analysis of the Three Models

Existing studies on agricultural sustainability assessments in the YRDUA indicate
that, compared with Anhui Province, Zhejiang, Jiangsu, and Shanghai provinces had
relatively high overall levels of agricultural sustainability [54,55], which is consistent with
assessment results of the EF and DPSIR models. The Zhejiang Academy of Agricultural
Sciences has evaluated the agricultural modernization level of all cities in Zhejiang based
on the Evaluation Index System of Agricultural Modernization, whose results showed that
Huzhou had the highest level of agricultural modernization and sustainable development,
which is similar to the results obtained by the three models applied in this study. However,
the relative level of agricultural sustainability of each city in Zhejiang is more similar to the
assessments obtained by the DPSIR model [56].

In this study, various effects were employed to improve the accuracy of the three
models and reduce uncertainties from the models themselves. For the EMA model, the
calculations reported in Brown [42] for global renewable resources was utilized to pre-
vent double counting; all UEVs were transferred based on the latest emergy baseline of
12.0 × 1024 sej y–1. However, the EMA model fails to consider some important variables,
including stakeholders, agricultural science, technology input, and government policy,
among others [48]. For the EF model, a component-based method was adopted to derive
the footprint values, which is a “bottom-up” analytical approach that can better reflect
the consumption of the agricultural practice. Compared with the traditional compound
method, which uses regional per capita ecological footprint data, the application of the
direct component approach is more suitable for the assessment of the agricultural EF,
especially considering that Shanghai and Zhejiang are the main grain-consuming areas
in China; these areas have, on average, above a 30% gap in the grain supply–demand
balance [57]. Therefore, per capita food consumption cannot effectively reflect the EF and
environmental pressure faced by an agroecosystem. However, there are still some deficien-
cies in the EF model in this study. Considering the limitations of data availability, we were
unable to calculate a large number of EFs, including the agricultural labor consumption,
GHG emissions, and livestock fecal production, which will lead to a slight decrease in the
EF value.

Agricultural sustainability is a fundamentally multi-dimensional concept determined
by various factors, e.g., cultivated land quality, agricultural science and technology, stake-
holders, and societal demands [58,59]. The DPSIR model accounts for more aspects related
to the sustainable development of agriculture. DPSIR also allows decision makers to adjust
the weights of indicators, which renders it more applicable to different research purposes.
In addition, government departments prefer to apply indicators to set sustainable goals for
subordinate departments in China; therefore, the DPSIR model based on multi-indicators
has better performance with respect to policy guidance and decision-making.
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Considering the available data, methodologies, assessment results, and significance for
policy makers obtained in this study, we suggest that all three tools provide indicators that
reveal the agroecosystem performance for different aspects. However, the DPSIR model
can better represent the level and ranking of the agricultural sustainability of cities in the
YRDUA, while the EF and EMA models are effective supplements for interpretations of the
agroecosystem status. For example, the EF model indicated that the agricultural EF of most
cities exceeds their ecological carrying capacity, which is manifested as an ecological deficit.
The EMA model showed that the ELR of some cities exceeded the threshold value; their
agroecosystems face serious environmental pressure. The EYR of economically developed
cities was relatively low, which indicated that there is no comparative advantage in terms
of agricultural investment and market competitiveness in those cities.

Finally, several limitations in this study require further interpretation. (1) The majority
of the raw data applied for the calculations was derived from official statistical data from
various provinces and cities; the accuracy of these data has a direct influence on the
results of each model. (2) In the calculation of the DPSIR model, we simply adopted a
minimum relative information entropy method to determine the combined weight of the
subjective and objective evaluation method, failing to provide further discussion on other
weight combination methods. (3) Only static panel data for 2016 were assessed for the
agroecosystems; we did not include a time-series analysis, such that we did not provide
observations of the trends in agricultural sustainability in the YRDUA.

5. Conclusions

The DPSIR, EF, and EMA models were applied in the present study to assess the
agricultural sustainability in the YRDUA. We then conducted a comparative analysis of the
three models. Based on this, the suitability and uncertainty of each model were discussed.
The DPSIR and EF models have better consistency at reflecting agricultural sustainability,
with a Pearson correlation coefficient of 0.71. Specifically, compared with Shanghai and
Anhui, Zhejiang and Jiangsu showed a high overall level of agricultural sustainability.
While, the EMA model yielded different results, the ranking of the agricultural sustainabil-
ity was Jiangsu, Anhui, Shanghai, and Zhejiang. However, all three models showed partial
consistency at reflecting the relative level of agricultural sustainable development of cities
in the same province: Huzhou in Zhejiang Province and Ma’anshan in Anhui Province
had the highest value in their respective provinces, but this regularity was not significant.
Additionally, the cluster analysis based on the natural break method also reveal similar
results. The DPSIR model can better reflect the relative level of agricultural sustainable
development in the study area, while the EF and EMA models are effective supplements
for the interpretation of regional agricultural sustainability.

Based on the observations, following recommendations can be provided to improve
the sustainable development of agriculture in the YRDUA. (1) A collaborative and inte-
grated platform should be built to utilize the agricultural comparison superiority and
optimize the allocation of agricultural production factors in the YRDUA, especially the
integration and complementarity of superiority between labor forces, cultivated land re-
sources in Anhui and Subei, advanced agricultural technology, and capital markets in
Zhejiang and Shanghai. (2) Over the past decade, the high input of industrial auxiliary
energy to obtain a high yield has resulted in increasingly severe environmental problems;
comprehensive measures should be taken to prevent damages. All measures, including
the implementation of zero-growth action in terms of chemical fertilizers and pesticides,
control of agricultural non-point source pollution, and restoration of contaminated farm-
land, will benefit the sustainability and resilience of the agroecosystem. (3) Agricultural
science and technology are fundamental for modern agricultural production; propelling
innovation-driven development to improve modern agriculture is of great significance,
including agricultural water-saving irrigation technology, soil testing, formula fertilization,
and crop straw resource utilization, among others. (4) Cultivated land resources are the
basis of agricultural sustainability. However, the rapid urbanization of the YRDUA has led
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to conflicts in ecological–production–living spaces, with cultivated land largely occupied
by artificial surfaces. Therefore, we must urgently take action to protect cultivated land.
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