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ground climates are still uncertain. Here, we selected 207 urban parks in 27 cities in East China with four different local
background climates, warm temperate sub-humid monsoon (WTC), northern subtropical sub-humid monsoon (NSC),
northern subtropical humid monsoon (NHC), and middle subtropical humid monsoon climate (MSC), for comparative
studies. The relative contributions of multi-influencing factors to the PCE and TVoE of urban parks were quantified
through a multivariate stepwise regression model and curve fitting. The results show that: (1) PCE increases from
WTC, NSC, NHC to MSC, and urban parks at low latitudes have a greater cooling effect in general than those at high
latitudes; (2) the area of the park is the dominant factor of PCE under four different local background climates (the ex-
planation rate exceeds 50%) and water bodies within urban parks play a more significant role in the cooling effect in
high latitudes, dry areas; (3) the TVOE of park on WTC, NSC, NHC, and MSC are 0.81, 0.71, 0.70, and 0.66 ha, respec-
tively, revealing that the background climate significantly affects the TVoE. These findings are essential to decision-

makers and can provide actionable knowledge for climate adaptation planning on a regional (climate) scale.

1. Introduction

Climate change and rapid urbanization have exacerbated the urban heat
island (UHI) effect (Oke, 1982; Stewart and Oke, 2012; Zhao et al., 2014)
and have caused several undesirable environmental changes and adverse
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effects, such as impairing air quality, increasing the cooling energy con-
sumption, and compromising the health of urban residents (Buchin et al.,
2016; Li et al., 2019; Ulpiani, 2020; Voogt and Oke, 2003). Therefore,
reducing the UHI effect and enhancing the resilience of urban areas has
received a lot of attention (Estoque et al., 2016; Norton et al., 2015;
Santamouris, 2014; Zhou et al., 2011). Measures such as replacing building
materials and building green roofs and other urban green infrastructure
have been studied to alleviate the UHI effect (Akbari and Kolokotsa, 2016;
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Santamouris, 2013; Zhang et al., 2017). In particular, urban parks are a
promising measure to combat the UHI effect because they are cost-
effective, environmentally friendly, and politically acceptable way (Aflaki
et al., 2016; Gunawardena et al., 2017; Yu et al., 2020). Many studies
have found that urban parks are 1-2 °C, or even 5-7 °C, cooler than their
surroundings, forming a “park cool island” (Feyisa et al., 2014;
Gunawardena et al., 2017; Jaganmohan et al., 2016; Oliveira et al., 2011;
Peng et al., 2021). Hence, the park cooling effect (PCE) is considered
essential for mitigating UHI on both local and global scales (Algretawee
etal., 2019; Lee et al., 2016; Oke et al., 2017).

Previous studies have mainly focused on the definition and quantifica-
tion of the cooling effect of blue-green space (Alexander and Wu, 2010;
Jaffal et al., 2012; Leuzinger et al., 2010; Ng et al., 2012), and the relation-
ship between PCE and influencing factors has been intensively investigated
at multiple scales (Gillner et al., 2015; Hunter et al., 2015; Masoudi and
Tan, 2019; Peng et al., 2018). PCE is mainly influenced by park character-
istics (e.g., plant individual, community and landscape levels), park
surrounding environment (e.g., biophysical characteristics and socio-
economic characters), and local background climate (e.g., climate zone
and latitudes) (Algretawee et al., 2019; Gunawardena et al., 2017;
Rahman et al., 2018; Yu et al., 2018). It should be noted that these studies
mainly concentrate on the correlation analysis between PCE and partial
influencing factors (Amani et al., 2018; Du et al., 2017; Jaganmohan
et al., 2016). For example, previous studies have shown that plant species
composition and community structure differ significantly in their ability
to affect the surrounding thermal environment (Feyisa et al., 2014;
Gillner et al., 2015). Landscape composition and configuration metrics,
such as landscape shape index (LSI) (Peng et al., 2020) and fractal dimen-
sion (FRAC) (Fan et al., 2019), account for great variability in PCE. The sur-
rounding environment, such as impervious surface index, nighttime light
index, and road density, have also been confirmed to be related to PCE
(Algretawee et al., 2019; Farshid et al., 2019; Jérémy et al., 2018). These
studies have provided a better understanding of PCE and have furthered
the knowledge for optimizing the design of urban parks (Mohajerani
et al., 2017; Yu et al., 2017). However, the identification of dominant fac-
tors and the independent contributions of multiple factors to PCE, which
are critical in urban park design, are still less understood, especially when
not all influencing factors can be considered simultaneously (Oliveira
et al., 2011; Park et al., 2019).

Although the contribution of the local background climate to PCE has
been studied, there is no consensus on the contributions of these factors
(i.e., latitudes and climate zones) (Yu et al., 2020). First, previous studies
demonstrated that local climate background conditions can significantly af-
fect the PCE (Bowler, 2010; Gunawardena et al., 2017; Yang et al., 2020),
and urban parks have different cooling intensities in various local back-
ground climates, such as the savanna climate (Mexico City, Mexico)
(Jauregui, 1990) and temperate maritime climate (Goteborg, Sweden)
(Konarska et al., 2016). The cooling effect of urban green vegetation is
lower in cities with high relative humidity in both temperate monsoon
and Mediterranean climates (Yu et al., 2018). Second, the local background
climate can also affect the factors influencing PCE. For instance, in plateaus,
the cooling effect is mainly determined by the species groups, canopy cover,
size, and shape of parks (Addis Ababa, Ethiopia) (Feyisa et al., 2014). In ad-
dition, the patch size of water bodies in parks was found to have the largest
contribution to the cooling intensity in subtropical monsoon climates (Peng
et al., 2020). In the Mediterranean climate, green spaces with a higher den-
sity of trees were more efficient in delivering the cooling effect (Grilo et al.,
2020).

Previous studies have indicated that there is a non-linear relationship
between park area and cooling intensity (Du et al., 2016; Jaganmohan
et al., 2016; Monteiro et al., 2016; Ru et al., 2007). Thus, the concept of
the threshold value of efficiency (TVoE) was proposed from the perspec-
tives of “law of diminishing marginal utility” (Yu et al., 2017). This concept
suggests that there is trade-off between blue-green space size and cooling
effects in the cost-benefit principle (Peng et al., 2020; Yang et al., 2020).
Specifically, in terms of the patch size, the blue-green space needs a
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minimum value to maintain the cooling effects; however, when it exceeds
the marginal utility, the cooling efficiency decreases (Yu et al., 2017).
The TVOE is critical in landscape planning and management in terms of
the blue-green system, and has emerged as an urgent topic (Yu et al.,
2021). The local background climate has been verified to be significantly
correlated with the TVoE (Fan et al., 2019; Yu et al., 2018). For example,
the TVoE of tree-covered green space is nearly 0.5 ha in both temperate
monsoon and Mediterranean climates (Yu et al., 2018). Peng et al. (2020)
showed that the TVoE of waterbody patches ranges from 0.49-0.70 ha in
subtropical monsoon climates. Moreover, the seasonal changes could also
affect the TVOE of blue-green space in temperate marine climates
(Copenhagen) (Yang et al., 2020).

In the existing literature, attempts have been made on PCE measure-
ment, various influencing factors analysis, and TVoE quantification, and
most of these studies are specific-case-based (Yu et al., 2020). The domi-
nant factors of PCE have not yet been identified, especially across different
local background climates (Feyisa et al., 2014). Similarly, the effect of the
local background climate on the TVoE of urban parks is still unclear and re-
quires further research. Therefore, studies involving more sampled parks
with different local background climates are vital for providing more gener-
alizable conclusions. To address these insufficiencies, we selected 207
urban parks in 27 cities with four different local background climates in
East China for a comparative studies. The specific objectives of this study
are as follows: (1) to identify the dominant factors and their relative contri-
bution to PCE in different local background climates; (2) to determine how
the local background climate affect the TVoE of urban parks; (3) and to pro-
pose specific and actionable suggestions for urban park planning for UHI
mitigation on a regional scale.

2. Materials and methods
2.1. Study area and data source

2.1.1. Study area

East China is a region with various climate zones, and rapid urbanization
has led to serious UHI problems, especially in Shanghai, Anhui Province,
Jiangsu Province and Zhejiang Province. Mitigation strategy of UHI is ur-
gent in this region. Therefore, the region is suitable for us to explore how
local background climate influence the dominant factors and threshold-
size of the cooling effect of urban parks. Then several criterions are consid-
ered in selecting cities and urban parks to ensure our study more reasonable.
For example, Zhoushan city in Zhejiang Province is an island city and has
relatively unique climate characteristics, and therefore was removed from
the study area. Moreover, to exclude the disturbance of the cooling effect
from other urban green infrastructure (UGI), the selected urban parks
should keep a certain distance from other landscapes, such as rivers, reser-
voirs, and mountains, etc. Finally, 207 urban parks in 27 cities were se-
lected, including Shanghai, nine cities in Anhui Province, ten cities in
Jiangsu Province, and seven cities in Zhejiang Province (Fig. 1). The local
background climate of the 27 cities was an essential prerequisite for our
study, however there were no distinct boundaries of climate zones among
these cities. Therefore, based on the climatic regionalization of China (Xu,
2018), two values for climate regionalization (i.e., mean annual precipita-
tion and average temperature) were considered to classify the 27 cities
into four different local background climates by cluster analysis (Yu et al.,
2017; Zheng et al., 2010) (Supplementary Tables 1, 2 and Supplementary
Fig. 1). In general, the latitude of four climate zones decreased successively
(Fig. 1). From north to south, the zones were: warm temperate sub-humid
monsoon climate (WTC), northern subtropical sub-humid monsoon climate
(NSC), northern subtropical humid monsoon climate (NHC) and middle
subtropical humid monsoon climate (MSC) (Supplementary Table 3).

2.1.2. Data source

To obtain high-accuracy data, in this study, the boundary and land
cover of urban parks were identified and digitized via artificial visual inter-
pretation from high-spatial-resolution Google Earth images from 2017. To
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Fig. 1. The study area and its climatic regionalization. (a) 207 selected urban parks in 27 cities with four different local background climates in the East China, (b) one of the
207 selected urban parks (i.e. Yangpu Park in Shanghai) and (c) location of the study area in China.

avoid uncertainty or error, we ensured that the Landsat 8 OLI/TIRS images
used for land surface temperature (LST) were taken close to the dates of the
Google Earth images (Wu et al., 2019). Four types of land cover were
mapped, that is, artificial surfaces, trees, grassland, and water body. Fur-
thermore, the shape files were geo-referenced and projected with
WGS_1984_UTM_Zone_51N and the topology rule was examined based on
ArcGIS 10.2. The areas of the 207 urban parks ranged from 0.2-94.0 ha,
mainly concentrated in the 1.0-5.0 ha range, however with an average
value of 6.74 ha (Supplementary Fig. 2).

The Landsat-8 TIRS is the newest thermal infrared sensor used by the
NASA Landsat project. It provides two adjacent thermal bands (10 pm and
12 pm) which is ideal for retrieving the LST (Jimenez et al., 2014). Fourteen
Landsat 8 OLI/TIRS images from summer of 2016 and 2017 were obtained
from the Geospatial Data Cloud (http://www.gscloud.cn/) (Supplementary
Table 4). To minimize the impact of weather conditions on the PCE, the spe-
cific day of remote sensing image acquisition was sunny, with a wind veloc-
ity less than 4 m/s (Peng et al., 2021). Land cover, road density, and point of
interest (POI) data (i.e., residential area and commercial buildings) within a
1 km buffer of park boundaries were also identified to explore the influence
of park surrounding environment on PCE (Jérémy et al., 2018) (Supplemen-
tary Table 5; Supplementary Fig. 3).

2.2. Land surface temperature (LST) retrieval

Previous studies have proved that the radiative transfer equation (RTE)
proposed by Jimenez et al. (2014) has the highest accuracy for LST retrieval

(Yu et al., 2014). Therefore, the RTE was used to calculate the LST in this
study.

First, radiometric calibration and atmospheric correction of remote
sensing images were conducted based on the ENVI 5.3 platform to obtain
the thermal radiance intensity (L;). Then, the atmospheric downward radi-
ance (Lam, :|), upward radiance (Lgm, ;1), and transmissivity (7) can be esti-
mated (http://atmcorr.gsfc.nasa.gov/). With these four parameters, the
surface radiance B(T;) in Eq. (1) can be calculated using Eq. (2), with a
given land surface emissivity (¢). Finally, the LST can be directly calculated
using Eq. (3).

L, = [EB(TS) + (1 - E)me,[HT + Lam,it (1)

B(TA) = [L/l - Lutm,iT - T(l - S)Larm.iwl/] /TS (2)

In Eq. (1), L, is the surface thermal radiance intensity received by the
satellite sensors, B(T}) is the ground radiance, T; is the LST, and 7 is the at-
mospheric transmittance.

T, = K:/ W[k, /B(T,) + 1] 3)

where Ky = 774.89 (mWm 2st~ ' pm ™~ '), and K, = 1321.08 K for Landsat
8 OLI/TIRS data.
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2.3. Definition and measurement of the park cooling effect (PCE) and TVoE

2.3.1. Calculation of park cooling effect (PCE)

There are several definitions and indicators that are used to express
the cooling effect of blue-green space, such as cooling intensity, cooling
gradient and cooling extent (Farshid et al., 2019; Jaganmohan et al.,
2016; Norton et al., 2015). Among them, cooling intensity is one of
the most widely used indicators in cooling effect studies, and is defined
as the average difference in LST across the ring buffer where LST first
drops with increasing distance from the urban park (Peng et al., 2020;
Yang et al., 2020). In this study, the cooling intensity was quantified
to determine the cooling effect of the urban park (Supplementary
Fig. 4).

Considering the resolution of the Landsat OLI/TIRS images, 30 m was
selected as the buffer. To calculate the cooling intensity, buffer analyses
from 30 to 990 m (urban park area smaller than 15 ha) and 30 to 2100 m
(urban park area larger than 15 ha) were carried out. The mean LST of
each ring buffer and the associated urban parks were then calculated. Fi-
nally, the maximum ALST was regarded as the cooling intensity.

2.3.2. Calculation of the threshold value of efficiency (TVoE)

TVoE is the trade-off between cooling efficiency and park area from a
cost-benefit perspective (Yu et al., 2017). The park cooling efficiency
curve shows that ALST first increases significantly (u?-u!) with the in-
creases in the size of the urban park (q' to q?). Then, after at a certain
point, when the size increases from q> to q*, there is only a small increase
in total utility (u*-u®) with additional park area. This point is the TVOE,
which occurs at the point where the slope of the resulting logarithmic func-
tion equals one (Supplementary Fig. 4). The detailed derivation of TVoE is
shown in Supplementary materials. This change-point is meaningful for ac-
tionable environmental planning so decision-makers can use the smallest
blue-green space to obtain the optimal cooling effect (Fan et al., 2019; Yu
et al., 2020).

2.4. Factors influencing park cooling effect

Previous studies have revealed correlations between PCE and various
influencing factors (Rahman et al., 2018; Steeneveld et al., 2014; Sun and
Chen, 2012). In this study, 12 influencing factors that have been widely
used in past studies (Feyisa et al., 2014; Gunawardena et al., 2017;
Jaganmohan et al., 2016; Jérémy et al., 2018; Peng et al., 2020) were
chosen to identify the dominant factors. These influencing factors include
park landscape characteristics and park environment and are shown in
Table 1.

2.5. Statistics analysis

To explore the correlation between potential influencing factors and
PCE, multivariate stepwise regression analysis was used to identify the
dominant factors and quantify the relative contributions of each inde-
pendent variable to the total explanation of PCE variation (Sun et al.,
2018). Specifically, the influencing factors with the highest standard-
ized regression coefficient were identified as the dominant factors
(Weng et al., 2008). Furthermore, the TVoE was examined based on
curve fitting between the park area and cooling identity (Yang et al.,
2020).

The method flowchart of this study is shown as Fig. 2.

3. Results
3.1. Quantification of urban park cooling effect (PCE)

As shown in Supplementary Fig. 5, urban parks were cooler than their
surrounding areas. The mean cooling intensity of all 207 urban parks was

2.31 °C, with values ranging from 0.60-5.13 °C. The cooling intensity of
urban parks in different local background climates varied to some extent.
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Table 1
Potential influencing factors on cooling effect of urban parks.
Categories of Impact factors Definition
variables
Landscape Park_shape_leng The perimeter of an urban park

characteristics of
urban parks

Park_shape_area
Park_water ratio

The area of an urban park

The proportion of the water body in an

urban park

The proportion of the forest land area in

an urban park

The proportion of the green area in an

urban park

LSI The landscape shape index of an urban
park

FRAC The fractal dimension of an urban park

Buffer_imperious_rate The proportion of the impermeable

surface in the 1 km buffer of an urban

Park tree rate

Park_green_rate

Surrounding
environment of
urban parks park

Buffer_water_rate The proportion of the water body in the

1 km buffer of an urban park

The proportion of the green area in the

1 km buffer of an urban park

The road network density in the 1 km

buffer of an urban park

The building density in the 1 km buffer

of an urban park (POI)

Buffer_green rate
Road_density

Architecture_dendity

Specifically, 58% of urban parks in WTC had cooling intensities in the
range of 0-2 °C. Whereas for NSC and NHC, 55.5% and 67.9% of urban
parks had cooling intensities of 1-3 °C, respectively. In MSC, 56.6% of
urban parks had cooling intensities of 2—4 °C (Fig. 3). PCE increases from
WTC, NSC, NHC to MSC, showing that urban parks at lower latitudes had
a better cooling effect in general (Fig. 4).

3.2. Influencing factors analysis of urban park cooling effect (PCE)

Multivariate stepwise regression analysis was conducted to identify the
dominant factors of PCE. As shown in Table 2, all retention factors were sig-
nificant at P < 0.05. The determination coefficients (R?) represent the pro-
portion of the variation in PCE explained by the regression model. The
standardized coefficients of the predictive model represented the relative
contributions of various factors influencing PCE.

Specifically, different influencing factors were retained, and 77.1%,
56.2%, 58.5%, and 50.7% of the variation was explained in the four final
regression models. Park shape area had a significant positive relationship
with PCE and was identified as the dominant factor. It explained over
50% of the PCE variation in four different local background climates. The
fractal dimensions of the park (FRAC) were maintained in the WTC and
NHC. FRAC was negatively correlated with the PCE, and its relative contri-
bution to PCE was nearly 18% in two types of local background climates.
This means that parks with higher geometric complexity may have a
smaller the cooling effect on their surrounding area. The landscape shape
index (LSI) was maintained in the NSC and NHC. LSI had a negative
relationship with the PCE, with relative contributions to PCE of 29.90%
and 19.59%, respectively. Urban parks with simple shapes has better
cooling effects. The water body ration was only maintained in the WTC. It
was positively correlated with PCE, and with relative contributions to
PCE of 13.24%. Road density was found to be negatively correlated
with PCE in MSC. Its relative contribution to the PCE was 20.37%
(Table 2). Higher road density means heavier traffic and more anthropo-
genic heat release, which may limit the cooling effect of parks beyond
their boundaries.

3.3. Threshold value of efficiency (TVoE) analysis
Fig. 5 shows the results of the TVoE with four different local background

climates. The TVoE values of the park areas in WTC, NSC, NHC and MSC
were 0.81 (R* = 0.64, P < 0.05), 0.71 (R* = 0.63, P < 0.05), 0.70 (R* =
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Fig. 2. Framework illustrating all the methodological steps taken in this study.

0.56, P < 0.05) and 0.66 ha (R*> = 0.55, P < 0.05), respectively. The TVoE
of park area in NSC and NHC were close because of their relatively similar
local background climates.

To explore how the local background climate affects the TVoE of urban
parks, we analyzed the relationship between the TVoE and climate condi-
tions. As shown in Fig. 5, the TVOE value increased with a decrease in the
mean annual precipitation and average temperature. Pearson correlation
analysis also proved this conclusion; specifically, the TVoE was significantly

negatively correlated with mean annual precipitation and average temper-
ature at the 0.05 confidence level, with related coefficients of —0.916 and
—0.919, respectively (Supplementary Table 6). In general, latitude de-
creases from WTC, NSC, and NHC to MSC. Therefore, we determined that
the TVoE decreased with decreasing latitude in the study area. This
means that planners in low latitude regions in East China could design rel-
atively smaller urban parks than high latitude regions while achieving the
same cooling effect.
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Fig. 3. Cooling intensity of 207 urban parks in four different local background climates.
cooling intensity of “0-17, “1-2”, “2-3”, “3-4”, “4-5” and “5-6” °C.

The “pink”, “yellow”, “light green”, “green”, “blue” and “dark blue” represent the
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Fig. 4. Distribution of park cooling intensity in four different local background climates.

4. Discussion

4.1. Dominant influencing factors affecting PCE in different local background
climates

Many potential influencing factors of PCE have been studied based
on specific cases (Farshid et al., 2019; Grilo et al., 2020; Masoudi and
Tan, 2019), but it is still unclear on how the local background climate
affects these factors (Wong et al., 2021; Yu et al., 2020). Park size is

Table 2

widely acknowledged as an essential influencing factor of PCE, regard-
less of whether it is green space or blue space (Algretawee et al., 2019;
Du et al., 2017; Ekwe et al., 2020; Jérémy et al., 2018; Peng et al.,
2020). A study by (Cao et al., 2010) indicated that park size can explain
60% of PCE variation in a subtropical humid monsoon climate. In addi-
tion, for blue space, a study by (Sun and Chen, 2012) found that water
body area had the highest relative contribution to the cooling intensity
variation in a temperate continental monsoon climate. This study fur-
ther verifies this conclusion: park area was the dominant influencing

Regression results with the influencing factor as predictor variables and the UCI intensity as response variables in four different local background climates. “Std. error” rep-
resents standard error. “DW” represents Durbin Watson Test, when the “DW” value is close to 2, it indicates that there is no first-order autocorrelation in the model.

Climate Factors Unstandardized  Standardized t p-Value Relative Regression model R? Adjusted F DW
zone coefficients coefficients contribution R? (p <0.01)
B Std.  Beta o)
error
WTC (Constant) 9.810 3.751 / 2.615 0.015 / PCI = 9.810 + 0.002 Shape_Area + 3.566 0.771 0.736 21.904 1.677
Shape_Area 0.002 0.000 0.765 8.019 0.000 52.47 B_Green_Rate — 8.570 FRAC + 1.160
B_Green_Rate 3.566 1.509 0.227 2.364 0.026  15.57 P_Water_Rate
FRAC —8.570 3.247 -0.273 —2.639 0.014 18.72
P_Water_Rate 1.160 0.605 0.193 1.916 0.046 13.24
NSC (Constant) 3.549 0.627 / 5.665 0.000 / PCI = 3.549 + 0.001 Shape Area — 1.653  0.562 0.5444  32.669 1.654
Shape_Area 0.001 0.000 0.797 8.055 0.000 70.10 LSI
LSI —1.653 0.480 —0.340 —3.441 0.001 29.90
NHC (Constant) 9.054 2.772 / 3.266 0.002 / PCI = 9.054 + 0.001 Shape Area — 1.528  0.585 0.560 23.066 1.600
Shape_Area 0.001 0.000 0.659 7.132 0.000 62.05 LSI — 5.508 FRAC
LSI —1.528 0.733 —0.208 —2.085 0.042 19.59
FRAC —5.058 2593 —0.195 -1.951 0.047 18.36
MSC (Constant) 1.832 0.332 / 5.512 0.000 / PCI = 1.832 + 0.001 Shape Area — 12.425 0.507 0.492 33.96 2.292
Shape_Area 0.001 0.000 0.692 8.002 0.000 79.63 Road_Den
Road_Den —12.425 6.063 -0.177 —2.049 0.044 20.37
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Fig. 5. The quantification of TVoE and its relationship with climate conditions. (a) TVoE of urban parks in four different local background, and (b) the relationship between

TVoE and climate conditions.

factor of PCE, explaining more than 50% of the PCE variation in all four
local background climates.

LSI is also an important influencing factor and has a negative corre-
lation with PCE (Jaganmohan et al., 2016; Masoudi and Tan, 2019;
Monteiro et al., 2016). Our studies showed that the relative contribu-
tions to PCE were from 20 to 30% in the NSC and NHC. In a temperate
continental monsoon climate, LSI accounts for approximately 6-12%
of the total variation (Chen et al., 2014). Specifically, for urban park de-
sign, parks with more complicated shapes have a smaller cooling inten-
sity than park with circle or square shapes (Du et al., 2016; Yu et al.,
2017). However, Yang et al. (2020) found that, in a temperate marine

climate (Copenhagen), when the size of the blue-green space exceeds
a threshold, a more complex shape will actually be more effective in de-
creasing the LST. In addition, the water body ratio of the urban park was
the only influencing factor in the WTC. As the WTC was the highest lat-
itude, with the lowest mean annual precipitation and average tempera-
ture, it may be concluded that the water bodies of urban parks in high
latitude, dry areas play a more significant role in PCE. One possible rea-
son is that plant transpiration is limited by low humidity, meaning that
water evaporation is more critical in dry areas (Anderegg et al., 2018).
This finding indicates that more or larger water bodies in parks could
benefit PCE in these regions.
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4.2. Impact of local climate background on TVoE

TVOE is essential for climate adaptation planning and has received con-
siderable attention since it was first proposed in 2017 (Fan et al., 2019;
Peng et al., 2020; Yang et al., 2020; Yu et al., 2017). TVoE research is still
in its infancy and more research is urgently needed to draw more accurate
and generalizable conclusions on a regional scale (Yu et al., 2020).

Existing studies on the TVOE of blue-green spaces are mainly based on
single cities, with less attention paid to urban parks with different local
background climates. However, the local background climate was found
to be highly associated with the variance of the TVoE (Yang et al., 2020;
Yu et al., 2018). For tree-cover green space, the TVoE in summer is 0.47
for Beijing and Tianjin (warm temperate continental monsoon climate)
and 0.37 ha for Xi'an (warm temperate continental monsoon climate) (Yu
et al., 2018). In subtropical monsoon climate, the TVoE of tree-cover
green space is 0.58 ha for Fuzhou (subtropical marine monsoon climate)
and 0.62 ha for Hong Kong (subtropical monsoon climate) (Fan et al.,
2019; Yu et al., 2017). For tropical climate, the TVOE of tree-cover green
space is 0.95 and 0.61 ha for Kuala Lumpur and Singapore, (tropical
rainforest climate), respectively (Fan et al., 2019). Generally, the TVoE of
tree-cover green space is larger in subtropical and tropical monsoon cli-
mates than in temperate climate zones. In other words, TVoE increases
with a decrease in latitude (Fig. 6). However, the opposite conclusion has
been determined for blue spaces (water body): as the latitude decreases,
the TVoE of blue space has been shown to became smaller. Specifically,
the TVoE of blue space is 1.12 ha in Copenhagen (temperate oceanic cli-
mate) (Yang et al., 2020), 0.9 ha in Wuhan (subtropical monsoon climate)
(Yu et al., 2020) and 0.45-0.7 ha in the Pearl River Delta urban agglomer-
ation (subtropical monsoon climate) (Peng et al., 2020). This means that, in
low latitude regions, relatively smaller blue space is required to obtain the
same cooling effect as larger blue space in high latitude areas. This is useful
from a cost-benefit perspective (Fig. 6).

However, previous studies have not determined a generalizable conclu-
sion for TVoE of blue-green space. In our study, 207 urban parks with four
different local background climates were selected for a comparative stud-
ies. First, our results demonstrated that the local background climate can
significantly affect the TVoE of urban parks. Also, the TVoE of urban
parks generally decreased with an increase in mean annual precipitation
and average temperature, in the order of WTC, NSC, NHC, MSC. Specifi-
cally, the TVoE were 0.81, 0.71, 0.70, and 0.66 ha, respectively. In other
words, the TVoE decreased from the high latitude to low latitude in our

Copenhagen, 1.12 ha
Temperate oceanic climate @

Copenhagen, 0.95 ha |
Temperate oceanic climate o [

Rome, 0.51 ha
Mediterranean climate

9_'—1, -

Lisbon, 0.52 ha
Mediterranean climate
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study area. This conclusion is consistent with the TVoE change with latitude
of blue space, whereas it is opposite to the green space. There are several
possible explanations for this founding. First, for blue space, the cooling ef-
fect comes from water evaporation. Theoretically, in low latitude regions,
higher atmospheric humidity will reduce evaporation and affect the cooling
effect of the water body. However, existing studies indicate that the TVoE of
blue space becomes smaller at lower latitudes. Second, for green space,
plant transpiration and shading effect are mainly cooling mechanisms.
Higher atmospheric temperature and humidity can change plant stomatal
behavior, limit plant transpiration, and alter the cooling effect (Anderegg
et al., 2018; Yu et al., 2018). Therefore, a large green space should be de-
signed to obtain a better cooling effect in lower latitude regions. For
urban parks that have both blue and green spaces, determining how the
local background climate influences PCE is more complicated. Our study
provides some preliminary conclusions, that is, the TVoE of urban parks de-
creases with decreasing latitude. Therefore, smaller urban parks in low lat-
itude areas can have the same cooling effect as larger urban parks in high
latitude areas. This is a useful insight from a cost-benefit perspective.

4.3. Implication and limitation

With the development of urban agglomerations in China, the mitigation
strategy of UHI effect need to be implemented on regional scale, and study
on regional scale may also provide us some conclusions that beyond single-
city research (Yuet al., 2020). To upscale the understanding of PCE from the
city level to regional scale, a climate-zone-based upscaling study was con-
ducted. Our study indicated that the TVoE of urban parks decreases with a
decrease in latitude, therefore, relatively smaller urban parks can be de-
signed to obtain optimal cooling effects. The optimal park areas in WTC,
NSC, NHC and MSC to be 0.81, 0.71, 0.70 and 0.66 ha, respectively. Corre-
sponding areas of urban park in cities of these climates are encouraged to
design for obtaining better cooling effect from cost-benefit perspectives.
For high latitude and dry areas, water body ratio plays a more important
role in PCE, and large water body can be considered in park design. Both
LSI and FRAC are negatively correlated with PCE, a simple shape and less
landscape patch fragmentation will benefit the cooling effect of urban parks.

Some limitations of the study must be mentioned. Firstly, a total of 14
remote sensing images of Landsat 8 OLI/TIRS were used for LST retrieval,
the application of multi-temporal remote sensing images might affect the
consistency of the LST retrieval for different urban parks, and have impacts
on the results to some extent. This is one of the challenging factors that
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Temperate monsoon climate
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Fig. 6. The TVoE value of existing studies in different local background climates. Explanations: case 1, 2, 3, 4, 5 and 6 cited studies of Yang et al. (2020), Yu et al. (2018), Fan

et al. (2019), Xie and Li (2021), Yu et al. (2017) and Peng et al. (2020), respectively.
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cannot be avoided. Secondly, more potential influencing factors, such as
leaf area index (LAI) (Gunawardena et al., 2017), plant species (Leuzinger
et al., 2010; Rahman et al., 2018) and normalized difference vegetation
index (NDVI) (Yu et al., 2020) should be considered for more comprehen-
sive and further study. Thirdly, the exploration from the perspective of
heat energy dynamics in urban parks was insufficient, including the latent
and sensible heat flux changes of urban parks in different local background
climates, which could tell us more accurate conclusions and should be
encouraged in future research (Armson et al.,, 2012; Oke, 1982;
Santamouris, 2014).

5. Conclusions

To explore how the local background climate influences the dominant
factors of the cooling effect and threshold size of urban parks, 207 urban
parks in 27 cities in East China with four different local background cli-
mates were selected for comparative study. Our findings suggest that PCE
increases from WTC, NSC, NHC to MSC, and that urban parks at low lati-
tudes have a better cooling effect in general than those at high latitudes.
The park area is the dominant factor of PCE under the four different local
background climates, with the explanation rate exceeding 50% in each re-
gion. In addition, the water bodies in urban parks can play a more signifi-
cant role in cooling effect at high latitude and dry areas. The TVoE of
parks in WTC, NSC, NHC and MSC were 0.81, 0.71, 0.70, and 0.66 ha, re-
spectively, demonstrating that the background climate significantly affects
the TVoE. These findings provide new insights into how the local back-
ground climate influences the dominant factors of the cooling effect and
TVOE of urban parks at a regional scale, as well as provide actionable eco-
logical knowledge for urban park design and climate-adaptive strategy re-
ferring to UHI mitigation.
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