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Abstract: Industrial activities have raised widespread concerns about groundwater pollution and
human health. Shanghai’s industrial land has been polluting the groundwater for more than 30 years;
however, it is not clear whether it poses a risk to human health. This study explores the health
risk degree in different groups of groundwater in old industrial areas in Shanghai, China. We
selected eight heavy metal elements (As, Cd, Cr, Ni, Hg, Pb, Cu, and Zn) as the research objects
and analyzed the characteristics of concentrations and spatial distribution using single factor index
and geostatistical analytical methods. Results indicated that the average concentrations of As and
Hg were higher than the environmental standards. Meanwhile, As, Ni, Hg and Pb in groundwater
were notable anthropogenic inputs. Compared with irrigation cropland, the pollution of Ni, Pb
and As in industrial land was obviously more serious. In addition, the health risk assessment
results indicated the priority control pollutants of non-carcinogenic risk and carcinogenic risk are As
and Cr, respectively. Our results showed that human activities have deeply increased heavy metal
concentrations in groundwater, which in turn poses risks to human health. These findings provide
scientific support for urban managers to reduce residents’ drinking water risks.

Keywords: GIS; heavy metals; health risk; industrial area; Shanghai; spatial distribution

1. Introduction

The rapid development of urbanization in Shanghai caused an increase in heavy metal
emissions and then polluted groundwater [1]. However, industrial waste was the main
pollution factor among the multiple pollution sources [2]. As this has not been properly
treated before discharge, the result is an increasing pollution risk in groundwater [3–5].
Long-term industrial production has led to high concentrations of toxic substances in
groundwater [6]. Due to the mobility of groundwater, harmful substances also presented
risks to the ecosystem of the surrounding land [7,8]. To reduce the risk of heavy metals, it
is very essential to identify priority pollutants and priority control areas.

The heavy metal pollution of groundwater was a prominent environmental problem
due to the fast spread of contaminants in the subsurface caused by industrial activities and
land use management [9–11]. Many studies related to industrial area pollution have been
undertaken in China. For example, Xiao et al. [12] and Chen et al. [13] investigated the
content of heavy metals in industrial land. Results showed that the content of heavy metals
was much higher than environmental standards, which posed severe negative effects to
the local land security. While the harms of industrial pollution to the environment were
obtained in China, the impact of land-use covers on health risks was not considered. Addi-
tionally, some foreign researchers have reached similar conclusions. Antoniadis et al. [14]
studied the impact of pollution on corn in Greek industrial areas. Rachel et al. [15] studied
the impact of the mining area on soil microorganisms. However, most of the previous
studies have focused on pollution status evaluation, and few studies have considered the
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influence of industrial activities on human health through groundwater. The degree of
environmental pollution was different under different land use types [16,17]. Therefore, to
more definitively determine the impact of Shanghai’s industrial activities on groundwater,
we used irrigation cropland and industrial land for comparative analysis.

Health risk assessment usually uses the risk model recommended by the United States
Environmental Protection Agency (US EPA) to analyze the harm level to human health
caused by external factors [18–20], but this ignores the spatial distribution characteristics of
health risk. On the other hand, spatial interpolation is an effective method for determining
high-risk areas [21–24]. However, research on the application of this combined method
remains relatively limited, with no research available on the application of this combined
method to groundwater in Shanghai. Therefore, combining these two methods can better
investigate the relationship between the spatial characteristics of heavy metals and health
risks.

Factories in the Putuo industrial area involved heavy metals in the production process,
and these have gradually built up since 1980. It is located in the upper reaches of the
Huangpu River, which was one of the drinking water sources in Shanghai, and has close
hydraulic connections. According to China’s groundwater environmental quality standards
and drinking water safety requirements, we found that As, Cr, Cd, Ni, Hg, Pb, Cu, and
Zn posed a great risk to the drinking water of Shanghai residents. Long-term industrial
activities may lead to serious heavy metal pollution in groundwater [25,26]. Bi et al. [27]
studied the health risks of Pb in industrial soils. Zhao et al. [28] Studied the health risk
of Cd in the atmosphere of Shanghai. However, in Shanghai, research on heavy metals in
groundwater is still relatively limited, and there is no research on the risk of heavy metals
in groundwater to human health. Therefore, to increase the public’s understanding of
groundwater risk in Shanghai, we selected an industrial area in Putuo as a case study.

The main objectives of our study were: (i) explore the concentrations and spatial
distributions of eight heavy metals (As, Cr, Cd, Ni, Hg, Pb, Cu, and Zn) in the groundwater
of Putuo industrial areas, (ii) compare the severity of heavy metal pollution under the two
land types (industrial land and irrigation cropland), (iii) identify and quantify priority
control pollutants and priority control areas based on health risk assessment. The results of
this study can provide a scientific basis for groundwater risk management and control in
industrial areas and provide theoretical support for rational land planning.

2. Materials and Methods
2.1. Study Area

The study area is located in the Putuo District, Shanghai, China, which is on the West
Bank of the Pacific Ocean at the confluence of the Yangtze River and Huangpu River. The
phreatic water level in Shanghai fluctuates within the range of 0.3–1.5 m [29]. The Putuo
District is 55.53 km2, the Gross Domestic Product (GDP) in 2020 was CNY 112.95 billion,
and the industrial output was CNY 10.93 billion [30]. The sampling area covers approxi-
mately 4 km2 (121◦21’1”—121◦23’44” E, 31◦15’57”—31◦17’27” N), and the soil is mainly
clay loam and light loam. The land types are mainly industrial land and irrigation land that
was used for crops. The surrounding boundary is the main road. According to 2010 census
data, the total population in the study area was approximately 83.5 thousand, with children
accounting for 7.7% and adults accounting for 92.3%. After 30 years of industrial develop-
ment, the government intends to carry out ecological transformation and convert industrial
land into parkland and residential land. The specific location is shown in Figure 1.
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Figure 1. Sketch map of the study site.

2.2. Sample Collection and Chemical Analysis

In this study, groundwater samples were collected in 2015. The sampling point
is located in the study area. In this study, the location of groundwater sampling was
determined by combining land use and hydrogeological data. A total of 125 groundwater
sampling points were arranged, with a depth of 1–1.5 m, which belonged to phreatic water.
During sample collection, the longitude and latitude of the sampling points were recorded
by a Global Positioning System (GPS). The distribution of sampling points is shown in
Figure 1. The samples were collected by an instantaneous method. The collected water
samples were placed in an incubator for cold storage and transported in the dark. They
were delivered to the laboratory on the same day, put in a refrigerator, and stored at 4 ◦C.
The water samples were filtered through a vacuum filtration unit (0.45 µm, Advantech
MFS Inc., Dublin, CA, USA) within 7 days, and the concentrations of eight heavy metal
elements (As, Cr, Cd, Ni, Hg, Pb, Cu, and Zn) were detected using Inductively Coupled
Plasma Mass Spectrometry (ICPMA-7900, Thermo Fisher, Waltham, MA, USA).

2.3. Risk Assessment Method

To comprehensively evaluate the environmental pollution in the study area, this study
combines the single factor index, Nemerow index (NI) and health risk assessment model to
determine the risk degree of heavy metals.

2.3.1. Single Factor Index

The single factor index method is a basic method [31] for evaluating a single pollutant
in the environment. We compared irrigation and industrial land to illustrate the serious-
ness of industrial activities to environmental pollution. The results reflect the pollution
degree of a single factor to the environment and can be used as basic data for multi-factor
comprehensive evaluation. The formula is as follows:
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Pi =
Ci

Csi
(1)

Pi: single factor index of element i;
Ci: measured concentration of element i, mg·L−1;
Csi: environmental quality standard of element i; mg·L−1.

2.3.2. Nemerow Index (NI)

Since the single factor index cannot reflect the overall environmental quality, it is
necessary to conduct a comprehensive quality evaluation at the same time. The Nemerow
index is a comprehensive evaluation index based on single factor index, so it can reflect
the overall environmental quality situation [32]. It considers the average and maximum of
the single factor index, highlights the role of severe pollution factors, and can evaluate the
pollution level more accurately. The formula is as follows:

NI =

√
P2

avg + P2
max

2
(2)

NI: Nemerow index;
Pavg: average of single factor index;
Pmax: maximum of single factor index.
The evaluation criteria of the single factor index and Nemerow index are shown in

Table 1.

Table 1. Evaluation standard of single factor index and NI.

Range of Pi or NI Extent of Contamination

≤1 safe
(1, 2] slight contamination
(2, 3] moderate contamination

>3 severe contamination

2.3.3. Health Risk Assessment

In order to determine the degree of risk to human health of eight heavy metals (As, Cd,
Cr, Ni, Hg, Pb, Cu and Zn) in the study area, we adopted the health risk assessment model
recommended by the United States Environmental Protection Agency (USEPA, Washington,
DC, USA). The non-carcinogenic risks and carcinogenic risks of adults and children were
evaluated separately. To carry out the health risk assessment, the exposure needed to be
calculated firstly, which is the basis for quantitative risk analysis of toxic and harmful
substances to human health [33].

Toxic and hazardous substances in the environment include carcinogens and non-
carcinogens, so exposure risk assessment can also be divided into non-carcinogenic risk
assessment and carcinogenic risk assessment. The eight metal elements can be divided
into two categories, including the carcinogenic metal elements As, Cd, and Cr, and non-
carcinogenic metal elements Ni, Hg, Pb, Cu, and Zn. However, when calculating non-
carcinogenic risk, it is also necessary to consider the effects of carcinogenic metal elements.

Daily intake

There are two main risk exposure routes for heavy metals in groundwater, namely
drinking water intake and skin contact. Average daily exposure is calculated according to
the following formula [34]:

ADDi =
C × IR × EF × ED

BW × AT
(3)
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ADDd =
C × EF × ED × SA × ET × PC × CF

BW × AT
(4)

Since exposure characteristics of heavy metals of Chinese residents are significantly
different from other countries such as the United States, the exposure parameter values
have been revised by combining USEPA’s “Exposure Parameters Manual” [35] and China’s
national conditions and regional characteristics [36] to determine the exposure parameters,
as shown in Table 2.

Table 2. Parameters of groundwater health risk assessment model.

Parameter Significance Unit Adult Child

ADDi daily intake via drinking water mg/(kg·d) - -

ADDd
daily intake via dermal

exposure mg/(kg·d) - -

C concentration mg·L−1 - -
IR ingestion rates L/d 1.8 0.7
EF exposure frequency d/a 350 350
ED exposure duration a 24 6
BW body weight kg 60 15

AT (Non-carcinogens) average time d 24 × 365 6 × 365
AT (Carcinogens) average time d 70 × 365 70 × 365

SA skin surface area cm2 16,600 12,000
ET exposure time h/d 0.33 0.33
PC dermal permeability constant 10−3 cm/h - -
CF unit conversion factor l/cm3 0.001 0.001

Non-Carcinogenic Risk

Non-carcinogenic risks are judged by calculating the hazard quotient (HQ) and hazard
index (HI). The greater the HQ and HI values, the higher the risk. The formula is as follows:

HQ =
ADD
RfD

(5)

HI = ∑ HQ (6)

ADD: daily intake via a certain route, mg/(kg·d);
RfD: non-carcinogenic reference dose produced via a certain exposure route, mg/(kg·d);
HQ: hazard quotient;
HI: hazard index caused by different intake routes.

Carcinogenic Risk (CR)

Carcinogenic risk refers to the risk that an individual may cause cancer during his
lifetime when exposed to potentially carcinogenic pollutants. To evaluate the overall
carcinogenic risk of multiple chemical substances, add the carcinogenic risk values of each
chemical substance to obtain the total carcinogenic risk (TCR) [37]. The formula is as
follows:

CR = ADD × SF (7)

TCR = ∑ CR (8)

ADD: daily intake via a certain route, mg/(kg·d);
SF: carcinogenic intensity coefficient, (kg·d)/mg;
CR: carcinogenic risk via a certain exposure route;
TCR: total carcinogenic risk via different intake routes.
The evaluation criteria [38] of non-carcinogenic risk and carcinogenic risk are shown

in Table 3.
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Table 3. Evaluation criteria of non-carcinogenic risk and carcinogenic risk.

Extent of Risk HQ or HI CR or TCR

safe ≤1 ≤1 × 10−6

acceptable risk 1 × 10−6–1 × 10−4

significant risk >1 >1 × 10−4

According to the EPA [39], the reference dose (RfD), skin permeability constant (PC),
and carcinogenic intensity factor (SF) of the eight heavy metals in groundwater under the
two exposure routes of drinking and skin contact are shown in Table 4.

Table 4. Groundwater parameter values of PC, SF, and RFD.

Parameter As Cd Cr Ni Hg Pb Cu Zn

PC 1.8 1 2 0.1 1.8 0.004 0.6 0.6

RfD drinking water 0.0003 0.0005 0.003 0.02 0.0003 0.0014 0.04 0.3
dermal exposure 0.0003 0.0005 0.003 0.0054 0.0003 0.00042 0.012 0.01

SF drinking water 1.5 6.1 41
dermal exposure 3.66 6.1 41

2.4. Data Analyzing and Statistics

All statistical analyses were processed in Excel 2016 (Microsoft, Albuquerque, NM,
USA). Inverse distance weight (IDW) interpolation is suitable for situations with a large
number of sampling sites and even distribution [40]. Therefore, we employed IDW for
spatial visualization using ArcGIS 10.7 (ESRI, Redlands, CA, USA). Monte Carlo simulation
(MSC) can assess uncertainty by means of probability distribution functions [41]. We
simulated 10,000 times with MSC to identify risk probability using Crystal Ball v11.0
(Oracle, Santa Clara, CA, USA).

3. Results and Discussion
3.1. Descriptive Statistics

Table 5 shows the concentration characteristics of pH and eight heavy metals in
groundwater. pH varied from 4.1 to 12.3, and 86.4% of the samples met the groundwater en-
vironmental quality standards (6.5–8.5). The average value of pH was 7.9, which indicated
the groundwater environment was alkalescent. The average concentrations of Cd, Cr, Ni,
Pb, Cu and Zn were 0.022 ± 0.002, 0.127 ± 0.01, 0.591 ± 0.04, 0.002 ± 0.01, 0.013 ± 0.06 and
0.035 ± 0.16 mg L−1, respectively. These concentrations were lower than the environment
standard (0.005 mg L−1 for Cd, 0.05 mg L−1 for Cr, 0.02 mg L−1 for Ni, 0.01 mg L−1 for
Pb, 1.0 mg L−1 for Cu, 1.0 mg L−1 for Zn). The average concentrations of As and Hg were
0.014 ± 0.03 and 0.003 ± 0.03 mg L−1, respectively, which was about 14 times and 3 times
higher than their environment standard (0.01 mg L−1 for As, 0.001 mg L−1 for Hg). The
coefficients of variation (C.V) of eight heavy metals varied from 1.64 for Cr to 11.60 for Hg,
and decreased in the following order: Hg > Cd > Pb > Zn > Cu > Ni >As > Cr. In summary,
the results indicated that the average concentrations of As and Hg were 14 and 3 times the
environmental standard, respectively, and the C.V of eight elements exceeded 1.5.
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Table 5. Statistical results of heavy metal concentrations.

Element Unit Min. Max. Avg. S.D C.V Standard Value *

pH - 4.1 12.3 7.9 1.01 0.13 6.5–8.5
As mg/L 0.002 0.399 0.014 0.03 2.23 0.01
Cd mg/L 0.00005 0.022 0.0003 0.002 6.76 0.005
Cr mg/L 0.005 0.127 0.007 0.01 1.64 0.05
Ni mg/L 0.005 0.591 0.014 0.04 3.03 0.02
Hg mg/L 0.0001 0.4679 0.003 0.03 11.60 0.001
Pb mg/L 0.0005 0.153 0.002 0.01 4.94 0.01
Cu mg/L 0.002 0.922 0.013 0.06 4.60 1.0
Zn mg/L 0.001 2.52 0.035 0.16 4.66 1.0

* Standard Value is the third-level standard for groundwater environmental quality in China.

Our findings that high pollution of As and Hg confirm the high harm of industrial
development to groundwater. Our data are consistent with Karunanidhi et al. [42], who
found industrial land pollution far exceeded non-industrial land. According to Stoeva
et al. [43], C.V > 0.5 belonged to high variability. Therefore, all eight elements belonged to
high variation. The results indicated that eight elements in industrial groundwater had
been disturbed by external factors.

3.2. Spatial Distribution Pattern of Heavy Metals

Based on the results of pollution degree, we chose four elements with serious pollution
as the analysis object. We found that the distribution characteristics had obvious regional
differences (Figure 2). The severe contamination level of As and Pb was located in the
northwest. The severe contamination level of Ni was located in the south. The pollution
distribution of Hg and NI was similar, and the severe contamination levels were in the
northwest and central part. In summary, the high pollution areas of different heavy metals
were relatively concentrated, mainly distributed in the northwest, south, and central region.

We inferred that the pollution in the northwest was related to traffic emissions. Because
the location was close to the main road, Pb was the characteristic pollutant of automobile
exhaust pollution [44]. The pollutants emitted by automobile exhaust entered into the soil
through atmospheric sedimentation, then entered into groundwater through infiltration
through water flow, such as rain. These might be the reasons why As, Hg, and Pb exceeded
the environment standard in the northwest. Compared with the land cover (Figure 1),
we found that polluted areas in the south had a high overlap with irrigated cropland.
Therefore, Ni pollution in the south might be caused by agricultural irrigation. This finding
is consistent with Kharazi (2021), who have found that the concentration of Ni was higher
in agricultural areas than non-agricultural land [45]. The land type of Hg pollution in the
central region was mainly industrial land. Hg was one of the raw materials of the factory
near this area. Therefore, we inferred that Hg pollution in the central region might come
from industrial emissions. In accordance with the present results, previous studies have
demonstrated that industrial emissions were one of the main causes of Hg pollution [46].
The environmental protection measures of the factories established in the early stage were
not strict. Early industrial planning rarely considered environmental protection. The
wastewater discharge system and treatment system in this industrial area were not very
good. In addition, the terrain of this area was relatively flat and the water body could not
flow out quickly, resulting in Hg pollution in the middle area.
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3.3. Effects of Land-Use Covers on Groundwater Heavy Metals

Figure 3 illustrates the range of metal single factor index for two land covers. It is
obvious that different land types led to great variations in the metal single factor index
among groundwater. The index of As, Cd, Cr, Ni, Pb, and Zn under industrial land
was higher than under irrigated cropland. However, the index of Hg and Cu under
industrial land had a lower level than under irrigated cropland. Compared to the evaluation
standard (Table 1), the average of Ni, As and Hg were above the safety limit under irrigated
cropland. The contamination level of these metals belonged to slight, moderate and severe,
respectively. In addition, the Cd, Ni, Pb, Hg, and As exceeded the safety limit under
industrial land. Cd, Ni, and Pb belonged to slight contamination under industrial land,
and also, Hg and As belonged to moderate contamination and severe contamination,
respectively. It should be noted that the index of Hg and Cd was above the safety limit, but
pollution points were few. In summary, irrigation cropland should focus on Ni and As, and
likewise, industrial land should focus on Ni, Pb, and As.
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irrigated cropland), n represents the number of sampling points that exceeded the detection line.

Both industrial land and irrigation cropland had Ni and As pollution, but industrial
land was more serious. A possible explanation for this might be that the amount of Ni
and As used in industrial raw materials was greater than in agriculture. Our data are
consistent with Tang [47], who reported industrial As and Ni concentration was higher
than agriculture. Hg might come from battery and electronic industries emissions [48]. As
could harm the respiratory system [49], and Ni and Hg could cause brain damage [50].
Therefore, before industrial land was converted into residential land or parkland, systematic
health risk assessment was necessary.
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3.4. Health Risk Assessment
3.4.1. Priority Control Pollutants

Figure 4 shows different elements’ contribution to total health risk. We found that
As and Hg had the highest non-carcinogenic risk in the two groups, which accounted
for 0.77 and 0.14, respectively. In addition, Cr had the highest carcinogenic risk, which
accounted for 0.93 and 0.92 of the total risk in adults and children, respectively. In summary,
non-carcinogenic risks should focus on As, and carcinogenic risks should focus on Cr.
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Our findings that As accounted for the highest non-carcinogenic risks might be due
to high As pollution (Figure 3). This finding is consistent with that of Li (2021), who
found high levels of As could cause health risks [51]. It should be noted that Cr had fewer
contaminated points (Figure 3), but it contributed to the main carcinogenic risk. This
might be because Cr had high biological toxicity. Naseri found that lower concentration
could cause health risks [52]. Therefore, if the local government could control As and Cr
emissions effectively, health risks could reduce significantly.

3.4.2. Main Contamination Pathways

Figure 5 shows risk proportion under two exposure routes (drinking water and dermal
exposure). We found that drinking risks were dramatically higher than dermal exposure.
The proportion of drinking in non-carcinogenic risk for adults and children was 99.46%
and 99.01%, respectively. The proportion of carcinogenic risk was 99.35% and 98.79%,
respectively. Consequently, the result showed that drinking water was the major mode of
risk exposure.
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This result is consistent with that of Ravindra who also found that drinking was the
riskiest route [53]. As the study area is located upstream of drinking water sources in
Shanghai, it should be paid great attention by the government.

3.4.3. Priority Control Areas
Carcinogenic Risk

Figure 6 shows the spatial distribution difference of health risk by using inverse
distance weighted interpolation. We found that significant carcinogenic risks (>10−4)
occurred in the whole study area. The highest risk areas were in the northwest and middle
area. On the whole, it showed regional distribution characteristics. We found that the
carcinogenic risk of Cr for children and adults was higher than As and Cd. Similarly, the
distribution characteristics of TCR were similar to Cr. Therefore, this result demonstrated
that Cr was the major carcinogenic risk element. Adults had a higher carcinogenic risk
than children. Table 6 shows the proportion of the area of each carcinogenic risk level. As
accounted for 9% and 99.9% for children and adults with significant cancer risk (>10−4),
respectively. Cr accounted for 100% for both children and adults with significant cancer risk
(>10−4). Similarly, TCR was the same as Cr. These results indicated that the whole study
area had significant carcinogenic risk. In summary, Cr is the major carcinogen element
found in the high-risk area located in the northwest and middle area, and adults had a
higher risk than children.
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Table 6. Area proportion of carcinogenic risk.

Groups Range
Area Proportion

CR (As) CR (Cd) CR (Cr) TCR

Child
<10−6 0.0% 95.7% 0.0% 0.0%

10−6–10−4 91.0% 4.3% 0.0% 0.0%
>10−4 9.0% 0.1% 100.0% 100.0%

Adult
<10−6 0.0% 0.0% 0.0% 0.0%

10−6–10−4 0.1% 99.5% 0.0% 0.0%
>10−4 99.9% 0.5% 100.0% 100.0%

The findings that Cr was the major carcinogen element might be due to the wider
use in industrial activities. Our findings were consistent with the results reported by
Cao et al. [54]. They conducted health risks on the soils near the typical petrochemical
industry in agricultural areas and found that Cr and As were priority metals for risk control.
However, our finding that adults had a higher risk than children is contrary to previous
studies. Belkhiri et al. found that children were more sensitive than adults to carcinogenic
risk [55]. A possible explanation for this might be that we chose a longer exposure time for
adults in the model parameters. This is because the land type of our study area will change
from industrial land to parkland and residential land. Due to the significant carcinogenic
risk in the whole area, appropriate management should be carried out before conversion to
residential land to reduce the risk of cancer.

Non-Carcinogenic Risk

Based on the contribution of each element to the total risk (Figure 4), we chose As
and Hg that had the highest non-carcinogenic risk as the study objects. Figure 6 illustrated
that the non-carcinogenic risk of As for children was significantly higher than adults, and
high-risk areas were distributed in the northwest and east. The high-risk areas of Hg
were mainly concentrated in the northwest and middle, but the difference between adults
and children was not obvious. The distribution of HI was similar to As. It indicated
that As was the major non-carcinogenic risk element. It was notable that children had a
higher non-carcinogenic risk than adults. Table 7 shows the area proportion of different
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non-carcinogenic risks. The significant non-carcinogenic risk areas of Hg were 7.5% and
6.3% for children and adults, respectively. However, the significant non-carcinogenic risk
areas of As were 99.9% and 26.0% for children and adults, respectively. The significant
non-carcinogenic risk area of HI was 99.98% and 47.7% for children and adults, respectively.
The results show that children had larger areas than adults at significant non-cancer risk. In
summary, As had the highest non-carcinogenic risk and presented a pattern of clustering
distribution, and additionally, children were more sensitive.

Table 7. Area proportion of non-carcinogenic risk.

Groups Range
Area Proportion

HQ (As) HQ (Hg) HI

Child
<1 0.1% 92.5% 0.02%
>1 99.9% 7.5% 99.98%

Adult
<1 74.0% 93.7% 52.3%
>1 26.0% 6.3% 47.7%

The high-value area of non-carcinogenic risk was mainly distributed in the northwest,
which is similar to the distribution of carcinogenic risk. This suggests that they might
have common pollution sources. Abu also found a similar result [56]. Our results that
children were more sensitive than adults might be that children’s various physiological
organs were not fully developed and their resistance and immunity were poor, so they
had low tolerance to toxic pollutants [57]. This is confirmed by the fact that children had a
higher significant non-carcinogenic risk area than adults. This is consistent with previous
research [58]. Therefore, children should be given special attention.

3.4.4. Cumulative Risk

Using Monte-Carlo simulation, we calculated the risk probability of two groups
(child and adult) exposed to groundwater in the industrial area (Figure 7). We found
that the probability of As and Hg exceeding the non-carcinogenic risk threshold (>1) was
84.4% and 83.2% for the child, respectively. The probability of As and Hg exceeding the
non-carcinogenic risk threshold (>1) was 76.5% and 73.3% for adults, respectively. The
possibility of non-carcinogenic risk of the other six elements was almost zero to adults
and children. The risk probabilities of the hazard index for children and adults were also
high, 91.2% and 86.8%, respectively. The probability of carcinogenic risk decreases in the
following order: Cr > As > Cd. The probability that the total cancer risk of children and
adults exceeded the risk threshold (10−4) was 96.5% and 98.6%, respectively. It should be
noted that the probability of non-carcinogenic risk for children was higher than that of
adults, but the probability of carcinogenic risk was lower than adults.

Non-carcinogenic probability for children was higher than adults, and drinking was
the main way to affect health risks (Figure 5). Hence, we suggested that the government
should pay more attention to the impact of drinking water on children’s non-carcinogenic
risk. Adults had a higher carcinogenic risk possibility, so we recommend controlling the
exposure time of adults to reduce the risk of cancer.

The main advantage of this research was to determine the risk hotspots distribution
visually. However, our research has two main limitations. The first is that the quoted
parameters were a combination of common international coefficients and previous studies,
which may not be completely consistent with the reality; the second was that the study
area is upstream of the drinking water source, but the actual residential drinking water
was treated by the water plant, so the concentration of heavy metals may be lower than the
concentration of samples, which overestimated the risk of heavy metal exposure. Although
our research scope was limited to specific cases, the results suggest that the health risks
in industrial areas were much higher than in agricultural land. This should arouse our
sufficient attention to industrial pollution. Additional studies are needed to determine
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the relationship between industrial structure and health risk to reasonably plan economic
development.
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4. Conclusions

According to the statistical results, the mean concentrations of Cd, Cr, Ni, Pb, Cu and
Zn were lower than the environmental standard, whereas those of As and Hg were about 14
and 3 times higher than the environmental standard. In two groups, As accounted for more
than 75% of the non-carcinogenic risk, and Cr accounted for more than 90% of the carcino-
genic risk, indicating that As was the priority control pollutant in non-carcinogenic risks,
and Cr was the priority control pollutant in carcinogenic risks. The spatial distribution of
health in groundwater exhibited a high risk in the northwest, indicating that the northwest
belonged to the priority control area. Due to the upper reaches of drinking water sources in
Shanghai, the pollution degree of groundwater in the study area is very important to the
health of inhabitants. The concealment and refractory rationality of groundwater pollution
mean that the remediation of the groundwater environment is a long-term process. Based
on the above research results, to protect human health, some measures are necessary:
(i) strengthen source control and reduce industrial wastewater discharge, (ii) As and Cr
should be used as priority pollutants, especially for drinking exposure, (iii) high-risk areas
should be regarded as priority areas, especially the northwest side, (iv) from the perspective
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of land planning, high-risk areas should be planned as non-residential land, (v) strengthen
the health examination of surrounding residents to find diseases related to groundwater
pollution in a timely manner. Our conclusions will benefit the government in reducing
waste emissions and rationally planning land.
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