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A B S T R A C T   

Trace metal(loid)s (TMs) in soils can seriously threaten the ecological environment and human health. With the 
limitation of resources and costs, determining priority control factor is critical for managing soil TM pollution. To 
explore the pollution characteristics, source apportionment, and human health risk of TMs, a total of 209 surface 
soil samples were collected from Anqing City, China. Results showed that all the average values of TM con
centration, except for Cr, were higher than their corresponding background value. Using a Positive matrix 
factorization model coupled with Correlation analysis, four sources (including agricultural sources, atmospheric 
deposition sources, industrial sources, and natural sources) were identified as the determinants for the accu
mulation of soil TMs, with the contribution rates of 12.4%, 8.1%, 64.1%, and 15.4%, respectively. The assess
ment of probabilistic health risks revealed that Non- carcinogenic risks of all populations were acceptable 
(HI < 1), while Carcinogenic risks were all at a high level (TCR > 10E-04). Agricultural pollution and As were 
identified as priority control factors, according to the analysis results of the relationship among TMs, pollution 
sources and health risks. Our findings provide scientific support for decision-makers to formulate target control 
policies and reduce management costs of soil pollution.   

1. Introduction 

With the rapid development of urban industrialization, many trace 
metal(loid)s (TMs) have been discharged into the urban environmental 
media, such as the atmosphere, water, and soil. Due to their cumulative, 
persistent, and toxic characteristics (Ali et al., 2019), TMs can pose a 
serious threat to the ecological environment and human health (Han 
et al., 2021; Kamani et al., 2018; Yuan et al., 2020; Zhang et al., 2020), 
and thus have attracted widespread concern. 

Human activities (such as industrial production, traffic emissions, 
pesticide and fertilizer application) can accumulate TMs in soils 
(Nagajyoti et al., 2010). These TMs can enter human body through three 
exposure ways (including oral ingestion, oral and nose inhalation, and 
dermal contact), and eventually cause harm to human health (Huang 
et al.,2018b). Therefore, identifying the sources of TMs and analyzing 
the potential health risks are critical for managing soil TM pollution 

(Han et al., 2021). 
Previously, many studies focused on the assessment of the 

concentration-oriented health risks (Singh and Kumar, 2017), but this 
cannot effectively distinguish the impact of natural sources and 
anthropogenic sources on health risks. Considering the uncontrollability 
of the natural sources, the key to soil TM pollution control is to restrict 
the discharge of anthropogenic pollution. Therefore, the source-oriented 
risk assessment is essential for decision-makers to develop mitigation 
strategies for human risks. At present, many researchers have realized its 
significance and gradually use the source-oriented method to assess 
health risks (Liu et al., 2018a, 2018b). The use of receptor model for 
health risk assessment is the mainstream of current research (Huang 
et al., 2021a, 2021b, 2018a, 2018b). However, some receptor models 
(such as Principal component analysis, Factor analysis, and Cluster 
analysis) cannot obtain the non-negative results and handle the process 
data below the detection level (Li et al., 2018; Paatero and Tapper, 1994; 
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Huang et al., 2021a), which are not conducive to source-oriented 
assessment. Many studies have shown that the Positive matrix factor
ization (PMF) model recommended by U.S. Environmental Protection 
Agency (US EPA) is an effective measure to make up for this deficiency 
(Fei et al., 2020; Guan et al., 2018; Paatero, 1997). Traditional health 
risk assessment (HRA) models (Khan et al., 2016) mainly rely on specific 
fixed exposure parameters and pollutant concentrations (Liu et al., 
2021). However, this assessment assuming the same parameters for all 
populations may lead to inaccurate assessment results. Fortunately, 
some uncertainty analysis models (such as Monte Carlo simulation, 
Bayesian analysis, and Meta-analysis) have shown great potential in 
exposure assessment and have begun to be applied for health risk 
assessment (Armstrong et al., 2004; Islam et al., 2019; Yang et al., 2010). 
Compared with other uncertainty models, Monte Carlo simulation is an 
effective probabilistic risk analysis method, which requires fewer data 
samples and can evaluate the possibility of exceeding the guide 
threshold (Karami et al., 2019; Tong et al., 2018). However, there are 
few studies on the application of Monte Carlo simulation in risk allo
cation so far. Hence, based on the combination of Monte Carlo simula
tion, PMF model, and HRA model, we attempt to develop a Probabilistic 
source-oriented risk (PSOR) model to (1) identify and quantify the 
critical pollution sources and (2) assess the health risks in this study. 

Previous studies have shown that pollution sources can cause 
different health risks due to different TM concentrations and toxic re
action factors (Fu et al., 2013; Lin et al., 2018; Liu et al., 2018a; Huang 
et al., 2018b; Islam et al., 2015; Wei et al., 2015; Wu et al., 2020; Zhang 
et al., 2019). Controlling and managing these pollution sources and el
ements usually requires considerable resources and costs (Pu et al., 
2019; Wang, 2018). However, because of the limited availability of re
sources and costs, not all TMs and pollution sources can be effectively 
and simultaneously controlled (Men et al., 2020). Therefore, deter
mining priority control factors (including TMs and pollution sources) is 
a highly critical step for preventing and controlling soil pollution (Chao, 
2019). The key to determining priority control factor is to sort out the 
relationship among metals, pollution sources, and health risks. How
ever, as far as we know, surprisingly little attention has been devoted to 
exploring this relationship systematically. Hence, we aim to reveal the 
impact of TMs and pollution sources on health risks and determine the 
priority control factor that contribute the most to health risks in this 
study. 

Anqing City is a typical industrialized city in the Yangtze River 
economic belt of China. Due to the highly developed industrialization in 
the past few decades, most urban soils has been polluted by TMs. 
However, little attention has been paid to preventing and controlling 
health risks caused by soil TMs in such rapidly developing and densely 
populated cities. Therefore, taking Anqing City as a case, this study 
aimed (1) to explore pollution characteristics of TMs in soils, (2) to 

quantitatively analyze pollution sources of TMs by using Pearson cor
relation analysis and PMF model, (3) to develop a PSOR model and 
assess health risks caused by TMs, and (4) to determine the priority 
control factor by investigating the relationship among TMs, pollution 
sources, and health risks. 

2. Materials and methods 

2.1. Study area and soil sampling 

Anqing City (30◦29′N-30◦41′N, 116◦57′E-117◦14′E) is located at the 
junction of the middle and lower reaches of the Yangtze River, with an 
area of 13,589 km2 and a population of 5.28 million. It is a highly 
industrialized city with petrochemical plants, electroplating plants, steel 
plants, and many other chemical factories. The study area is rich in 
natural resources (such as minerals, land, and organisms), and mineral 
smelting is the primary industry. A total of 209 surface soil (0–20 cm) 
samples were collected from the urban areas, and all geographical lo
cations of the sampling sites were recorded using handheld GPS (Fig. 1). 
According to the five-point sampling in the specification of GB/T 36197- 
2018 (Huang et al., 2021b; Jia et al., 2019; MARA, 2018), each repre
sentative sample was a mixture of five equal-weight sub-samples 
collected from five locations. After been removing the larger stone, 
grassroots and other impurities, the original mass of each sample was 
not less than 1 kg. All collected samples were kept in polyethylene bags 
and sent to the laboratory for further analysis. 

2.2. Measurement method of TM concentration 

The collected soil samples were air-dried to constant weight at room 
temperature and then sieved using a 2 mm nylon mesh. About 50 g soil 
sample was grounded in a mortar to pass a 120-mesh nylon mesh. The 
soil sample (about 0.5 g) was first digested in an acid mixture of HNO3 
(60%) and HClO4 (60%) (2:1), and then digested with microwave 
(Sardans and Peñuelas, 2005). The Cd, Pb, Cr, Ni, As, Cu and Zn con
centrations were measured by Inductively coupled plasma mass spec
trometry (ICP-MS), with the detection limits of 0.01 mg/kg, 0.1 mg/kg, 
0.1 mg/kg, 0.1 mg/kg, 0.01 mg/kg, 0.1 mg/kg, and 0.5 mg/kg, 
respectively. The Hg concentration was monitored by a cold atomic 
absorption mercury meter (JKG-205). To avoid the error of impurities, 
the blank solution was prepared by deionized water without soil sam
ples, following the same steps and conditions as the sample digestion. 
Blank measurements were performed in every 20 soil samples and 
repeated three times for each blank sample (Alsbou and Al-Khashman, 
2018). 

Fig. 1. Location and sampling sites of the study area.  
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2.3. Positive matrix factorization model 

As a multivariate factor analysis tool, PMF model (Paatero, 1997) has 
been gradually used in the source analysis of TMs in soils (Lv, 2019). The 
sampling data matrix (X) is divided into a factor distribution matrix (G) 
and factor contribution matrix (F) to identify the source types that 
contribute to the sample (Paatero, 1997), which can be expressed as: 

Xij =
∑ p

k = 1
GikFkj + Eij (1)  

where Xij is the concentration of the ith element measured in the jth 
sample, Gik is the source profile for ith element for kth source factor, Fkj 
is the contribution matrix of kth source factor for jth samples, and Eij is 
the residual error matrix. Meanwhile, the PMF model can obtain the 
factor contribution through the minimum objective function Q: 

Q =
∑n

i=1

∑m

j=1

E2
ij

U2
ij

(2)  

where Uij denotes the ith element uncertainty of the jth sample. The 
uncertainty is calculated based on the sample concentration and the 
method detection limit (MDL). 

When the sample concentration is less than or equal to the MDL, the 
sample concentration is replaced by 1/2 MDL and the uncertainty (u) 
can be calculated by Eq. (3) (Paatero, 1997): 

u =
5
6

× MDL (3) 

When the sample concentration is higher than the MDL, the uncer
tainty (u) follows Eq. (4): 

u =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ × concentration)2
+ (MDL)2

√

(4)  

where σ is the relative standard deviation which is calculated by the 
ratio of standard deviation to average. 

2.4. Human health risk assessment model 

The human health risks, including Carcinogenic risk (CR) and Non- 
carcinogenic risk (NCR), are generally calculated by the HRA model 
(US EPA, 1996). CR is an assessment probability of an individual 
suffering from cancer due to long-term exposure to a particular pollutant 
or mixtures of pollutants (Kamarehie et al., 2019), while NCR is more 
associated with chronic exposure include genetic and teratogenic effects 
(Huang et al., 2021b). To assess the health risk caused by soil TMs, the 
susceptive population was divided into three groups: adult females, 
adult males, and children. In general, unlike atmospheric particles, TMs 
in soils can hardly reach the human body through inhalation (Zhao and 
Duan, 2014). Therefore, the average daily exposure doses (ADDs) only 
consider the two main exposure pathways (including direct oral inges
tion and dermal contact), and it is calculated as follows: 

ADDdermal =
Csoil × SA × AF × ABF × EF × ED

BW × AT
(5)  

ADDdermal =
Csoil × SA × AF × ABF × EF × ED

BW × AT
(6)  

where Csoil is the concentration (mg/kg) of TMs. The exposure param
eters of BW, ED, SA, AF, IngR, ABF, AT, and EF were shown in Table S1. 

The Carcinogenic risk is assessed by the total Carcinogenic risk (TCR) 
of TMs, which is calculated by Eq. (7) (Wu et al., 2020): 

TCR =
∑

CRi =
∑

(ADDi × SFi) (7)  

where CRi is the Carcinogenic risk (CR) of each TM, and SFi is the slope 
factors value of each TM (Table S3). If TCR > 10-4, it indicates that the 
risk is unacceptable; and if TCR < 10-6, it indicates the opposite (Wu 

et al., 2015). 
The Non-carcinogenic risk is assessed by the total Hazard indices (HI) 

of TMs, which is calculated by Eq. (8) (Wu et al., 2020): 

HI =
∑

HQi =
∑ ADDi

RfDi
(8)  

where HQi is the Hazard quotient (HQ) of each TM and RfDi is the 
corresponding reference does of each TM (Table S3). If HI > 1, it in
dicates possible adverse health effects, and HI < 1 means no apparent 
risk to human body (Wu et al., 2015). 

2.5. Hybrid model combing PMF and HRA 

Health risks from different sources are quantitatively assessed by a 
hybrid model that combines the PMF and HRA models. The hybrid 
model is performed in the following four steps:  

1) Analyze the potential source contribution of each TM based on the 
PMF model;  

2) Estimate the concentration of the ith element in the jth sample from 
the kth source by Eq. (9): 

Ck
ij = Fk

ij × Xij (9)  

where Ck
ij is the concentration (mg/kg) of the ith element from the kth 

source in the jth sample, and Fk
ij is the estimated contribution rate 

of the ith element from the kth source in the jth sample, and Xij is the 
measured concentration (mg/kg) of the ith element in the jth sample.  

3) Fit the probability density curve of the ith element from the kth 
source in all samples by Monte Carlo simulator. Probability density 
functions (PDFs) of TMs concentration from each source with Monte 
Carlo simulator were shown in Table S2.  

4) Assess the human health risk quantitatively from different sources 
with the Monte Carlo simulator. ADDs of the ith element from the kth 
source in the jth sample are estimated by Eqs. (10–11): 

ADDk
ij,dermal =

Ck
ij × SA × AF × ABF × EF × ED

BW × AT
(10)  

ADDk
ij,ingestion =

Ck
ij × IngR × EF × ED

BW × AT
(11) 

The exposure parameters of BW, ED, SA, AF, IngR, ABF, AT, and EF 
were shown in Table S1. The Carcinogenic risks for different sources are 
determined as Eq. (12): 

CRk
ij,n =

(
ADDk

ij,n × SFi

)
(12)  

where CRk
ij,n is the Carcinogenic risk on the nth exposure pathway from 

the kth source of the ith metal in the jth sample, and SFi is the slope 
factor of each TM (Table S3). The Non-carcinogenic risks for different 
sources determined as Eq. (13): 

HI = HQk
ij,n =

ADDk
ij,n

RfDi
(13)  

where HQk
ij,n is the Hazard quotient on the nth exposure pathway from 

the kth source of the ith metal in the jth sample, and RfDi is the corre
sponding reference does of each TM (Table S3). 

2.6. Statistical analysis 

The statistical analysis was conducted by using IBM SPSS v17.0 (IBM, 
USA). The bitmap of the sampling site was constructed with ArcGIS 
v10.7 (Liu et al., 2018a). Pearson correlation analysis and descriptive 
statistics were performed with R software environment. Pollution source 
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analysis was conducted by following the PMF 5.0 (US EPA, 2016). The 
probabilistic health risks of TMs and pollution source were analyzed by 
Monte Carlo simulation. Oracle Crystal Ball software was used for 
simulation, and the number of iterations was set to 10,000 (Karami 
et al., 2019). 

3. Results 

3.1. Descriptive statistics of soil trace metal(loid)s 

As shown in Table 1, the mean concentrations of seven TMs were 
0.34 mg/kg (Cd), 46.01 mg/kg (Pb), 12.91 mg/kg (As), 25.73 mg/kg 
(Cu), 90.02 mg/kg (Zn), 59.51 mg/kg (Cr), and 0.32 mg/kg (Hg), 
respectively. The ranking of the mean concentration for all TMs was as 
follows: Zn > Cr > Pb > Cu > As > Cd > Hg. According to the Anhui 
Province soil environmental quality standard, all the average concen
trations of TMs except for Cr were higher than the background values 
(Fig. S1). The over-standard rate of each TM was as follows: Hg > Cd >
Pb > Zn > As > Cu > Cr. It is worth noting that the average concen
tration of Hg (700%) had a high over-standard rate. Among all TMs, the 
average and maximum concentrations of Cd, Pb, Cu, and Hg did not 
exceed their corresponding guide values. Besides, although the average 
concentration of As did not exceed the guide value, the maximum con
centration was 2.53 times the guide value (accounting for 14.4% of all 
samples). 

3.2. Source analysis of trace metal(loid)s in soils 

Pearson correlation analysis was used to identify the correlation 
between different TMs, and PMF model was then used to identify and 
quantify the potential sources of TMs. Four factors finally determined by 
using PMF model coupled with Correlation analysis (Fig. 2). Correlation 
analysis results showed that there were significant positive correlations 
between Zn and Cd, and between Zn and Cu. This suggested that these 
elements might come from the same source. Hg and Pb also presented a 
positive correlation, while Hg and Zn, Hg and Cu, Hg and Cr presented a 
negative correlation, respectively. This showed that Hg and the other 
TMs might not come from the same source. 

The PMF model was run 20 times, and ultimately four factors were 
determined (Fig. S2). Factor I had the strongest relationship with As 
(89.2%). The main elements of Factor II were Pb (62.0%) and Hg 
(100%), suggesting that these two elements converged in a common 
source. Factor III was mainly related to Cd (96.1%), Cu (83%), and Zn 
(80.3%), which indicated that these TMs were closely related and may 
have similar sources. Factor IV showed the highest scores for Cr (90.7%). 

3.3. Health risk assessment based on Monte Carlo simulation 

3.3.1. Concentration-oriented health risk assessment 
By using Monte Carlo simulation (Section S1), Fig. 3 showed the 

probability distribution of Carcinogenic risk and Non-carcinogenic risk 
in different populations (children, adult females, adult males). 
Compared with adult females and adult males, children suffered more 

serious Carcinogenic risk, and the order of mean TCR value for three 
populations was as follows: children (8.30E-05) > adult females (4.02E- 
05) > adult males (1.81E-05). Additionally, nearly 98.8% (children), 
97.5% (adult females), and 95.5% (adult males) of TCR values exceeded 
1.0E-06. The high over-standard rate indicated the Carcinogenic risk 
was non-negligible in this study area. As for the Non-carcinogenic risk, 
the average HI value for children, adult females, and adult males were 
1.93E-01, 5.03E-02, and 2.72E-02, respectively. According to the 
probability distribution, merely 0.2% of HI values for children surpassed 
the threshold of 1, and adults’ HI values were within a safe range. It 
indicated that these TMs hardly posed a significant Non-carcinogenic 
risk to the health of children and adults. Overall, children suffered 
from higher Carcinogenic risk and Non-carcinogenic risk than adults. 
Hence, the health risk assessment in this study area should pay more 
attention to children. 

3.3.2. Source-oriented carcinogenic risk assessment 
The results of source-oriented risk assessment showed that Factor I 

was the primary anthropogenic source of Carcinogenic risk (Fig. 4a). 
The average risk values of Factor I were 1.17E-05, which was 11.7 times 
higher than the acceptable threshold (1E-06). For specific TMs, the 
contribution rates of As in Factor I and Cd in Factor III to CR are 96.8% 
and 95.9% (Fig. 4b and Figs. S3a-S3b). However, the Carcinogenic risk 
caused by As in Factor I cannot be ignored because the probability of 
exceeding the risk value reach 73.5%. In addition, the CR value caused 
by Pb in all sources did not exceed 1E-06 (Fig. S3), but Pb in Factor II 
contributed most to CR (62.0%). 

3.3.3. Source-oriented non-carcinogenic risk assessment 
The probability distributions of the Non-carcinogenic risk of 

different sources were shown in Fig. 5. Obviously, the Non-carcinogenic 
risks of different sources were different, and the risk values (the 95th 
percentile) of all sources were below the acceptable threshold (HI = 1), 
indicating no potential Non-carcinogenic risk (Fig. 5a). For specific 
sources, Factor I had a more significant contribution to HI value than 
other sources. The mean contribution rate for different sources 
decreased in the following order: Factor I > Factor IV > Factor II >
Factor III. Although Cd, Cu, Zn, and Pb in Factor III mainly contributed 
HQ values, they contributed the least to the HI value of children. The 
risk values (the 95th percentile) of TMs from all sources were lower than 
the acceptable threshold (HQ = 1), indicating that all TMs posed 
negligible Non-carcinogenic risk to children. 

4. Discussion 

4.1. The pollution characteristic of trace metal(loid)s in soils 

The concentrations of all TMs (except for Cr) exceeded that of the 
background value, indicating that TMs significantly polluted the soil in 
the study area. Previous studies showed that the anthropogenic activ
ities (such as agricultural activities, traffic emission, and industrial 
production) might cause high over-standard values for Hg and Cd 
(Huang et al., 2015; Wang et al., 2019b). Besides, TMs with the 

Table 1 
Statistical summary of trace metal(loid) concentration (mg/kg) in soils of the study area.  

Statistics Cd Pb As Cu Zn Cr Hg 

Mean  0.34  46.01  12.91  25.73 90.02 59.51  0.32 
Median  0.20  34.85  11.25  22.29 69.30 56,96  0.11 
Max  3.39  292.00  50.55  669.00 569.00 239.35  2.38 
Min  0.01  8.24  0.33  0.71 4.02 0.10  0.002 
SD  0.44  34.63  9.39  46.34 84.96 32.91  0.45 
ABV  0.097  26.6  9.0  20.4 62.0 66.5  0.04 
GV  20.0  400.0  20.0  2000.0 n/a n/a  8.0 

Abbreviations: SD, standard deviation; ABV, the background value of TMs in Anhui Province of China; GV, guide values of Soil environmental quality (GB36600-2018); 
n/a, not available. 
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concentration exceeding the screening value (namely, the guide value 
for soil pollution) may cause risks to human health (MEE, 2018). 
Therefore, whether the TM concentration exceed the corresponding 
guide values provides the essential basis for assessing the harm to 
human health (Guan et al., 2018). The concentrations of Cd, Cu, Pb, and 
Hg at all samples were below their corresponding guide values, indi
cating that these TMs were less likely to pose risks to human health. 
However, the As concentration in 14.4% of the samples exceeded the 
guide values, showing that As may pose a risk to human health. 
Therefore, local pollutant management and control should pay more 
attention to As pollution. 

4.2. Source interpretation of trace metal(loid)s by using correlation 
analysis and PMF model 

To obtain a reasonable and quantifiable explanation for the sources 
of TMs, the Correlation analysis and PMF model were conducted. In the 
PMF processing, the main indicators for PMF error evaluation are as 
follows: (1) more than 80% of the factors are mapped to the base factor 
in bootstrap (BS), (2) no factor swap was occurred for Qmax = 4 in 
displacement of factor elements (DISP), and (3) the objective function Q 
was minimum and stable bootstrap enhanced by displacement (BS-DISP) 
(Heidari et al., 2021; Norris et al., 2014). Furthermore, scaled residual 

Fig. 2. Source analysis of trace metal(loid)s (TMs) in soils of the study area by combing a) Pearson correlation analysis and b) Positive definite matrix factorization 
(PMF). The width of each TM was shown to denote the correlation coefficient. The red scale is used to indicate a negative correlation between two TMs, while the 
black scale is for a positive correlation. The histogram is used to represent the percentage of each factor. Different color gradients are used to indicate the proportions 
of each TM for different factors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The probability distribution for Carcinogenic risk and Non-carcinogenic risk: a) Total carcinogenic risk (TCR); b) Hazard index (HI). The red, blue, and green 
curves represented the probability distribution of adult females, children, and adult males, respectively. The black dotted line represented the acceptable threshold 
(TCR = 1E-06) and cautionary threshold (TCR = 1E-04) in Carcinogenic risk, and acceptable threshold (HI = 1) in Non-carcinogenic risk, respectively. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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values after standardization were within ±3, and the signal-to-noise 
(S/N) ratio of all TMs exceeded 2 (Guan et al., 2018). Therefore, the 
concentration data in the present study can be used for the PMF model, 
and the processing result was reasonable and reliable. According to the 

PMF processing result, four factors (named Factor I, Factor II, Factor III, 
and Factor IV) were finally determined, with the contribution rate of 
12.4%, 8.1%, 64.1%, and 13.4%, respectively. 

Factor I was mainly characterized by As (89.2%). The mean 

Fig. 4. (a) The probability distribution of Total carcinogenic risk (TCR) and the Carcinogenic risk (CR) of each TM based on different sources for children. a) 
Probability distribution of Total carcinogenic risk (TCR) based on probabilistic source-oriented risk (PSOR) model; b) the Carcinogenic risk (CR) of each TM based on 
different sources. The red, blue, green, or purple curves represented the probability distribution of Factor I, Factor II, Factor III, and Factor IV, respectively. The 1E-06 
and 1E-04 of the black line represented the acceptable threshold and cautionary threshold in Carcinogenic risk. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The probability distribution of Hazard risk (HI) based on probabilistic source-oriented risk (PSOR) model, and the Hazard quotient (HQ) based on different 
sources for children. The red, blue, green and purple curves represented the probability distribution of Factor I, Factor II, Factor III, and Factor IV, respectively. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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concentration of As exceeded the background value, showing the 
anthropogenic sources might contribute to the accumulation of As. Some 
previous studies have reported that As may be allocated to agricultural 
production (Fei et al., 2020; Zhang et al., 2018). For example, inorganic 
arsenic (calcium arsenate, sodium arsenate, lead arsenate) was proved 
to be widely used in fertilizers to increase crop production (Lu et al., 
2012). Liang et al. (2015) also found that As was present in pesticides. 
Previous studies have shown that long-term agricultural activities and 
greening management (such as the over-use of fertilizers and pesticides) 
might lead to the accumulation of As in soils (Huang et al., 2021b; Jiang 
et al., 2017; Liu et al., 2017). There are many agricultural lands around 
the study area. Meanwhile, the green coverage in the study area is about 
4169 ha, accounting for 40.1% of the whole study area. It was a common 
phenomenon to use fertilizers and pesticides in local farming and daily 
greening management. According to the 2019 local statistics yearbook 
(AQBS, 2019), 194,892 tons of fertilizers and 8001 tons of pesticides 
were used in 2018. Excessive use of fertilizers and pesticides in agri
cultural and greening practices could accumulate TMs in soils (Luo et al., 
2009). Therefore, it could be inferred that Factor I was agricultural 
sources. 

Factor II was dominated by Pb (62.0%) and Hg (100%). Automobile 
fuel containing Pb has been confirmed, so Pb is often regarded as the 
mark of traffic emissions and atmospheric deposition (Cai et al., 2015; 
Guan et al., 2018; Wang et al., 2019b). Previous studies have reported 
that automobile exhaust accounted for approximately two-thirds of the 
global lead emission over the past few decades (Fei et al., 2020). In 
addition, coal mining waste gas produced by combustion and fuel was 
another important source of Pb (Cui et al., 2018). Pb could diffuse into 
the atmosphere by burning fuel and then entered the soils through at
mospheric deposition (Duan et al., 2020). According to the Anqing 
Traffic Statistics Yearbook (AQBS, 2019), the local road density and the 
number of vehicles were 172.7 (km/100 km2) and 491,539 in 2018. The 
burning of a large number of fossil fuels and the increase in the number 
of vehicles would lead to increased Pb pollution. On the other hand, 
anthropogenic activities might cause the high over-standard rate of Hg 
(about 700% in this study). The correlation between Hg and other TMs 
(except for Pb) was weak or negative, indicating that Hg had different 
sources from them. Previous studies have supposed that Hg accumula
tion was mainly associated with coal combustion and traffic emission 
(Lv, 2019; Rachwał et al., 2015). Hg was easily volatilized into the at
mosphere through fuel combustion because of its high volatility (Veja
hati et al., 2010; Wang et al., 2012), which was different from other TMs. 
Hg in the atmosphere could enter the soil through dry and wet atmo
spheric deposition (Lv et al., 2013). With the increase in the number of 
vehicles and the development of industry in the study area, more and 
more industrial waste gas and automobile exhaust enter the atmosphere, 
causing the Hg and Pb concentrations to gradually increase. Conse
quently, Factor II could be explained as atmospheric deposition sources 
caused by fuel combustion and traffic emissions. 

Factor III had high factor loading values for Cd (96.1%), Cu (83.0%), 
and Zn (80.3%). Pearson correlation analysis also proved that there 
were significant positive correlations between Pb and Cd, and between 
Zn and Cu. This indicated that these groups of TMs may come from the 
same pollution source. Many previous studies have described that Cd, 
Cu, and Zn were associated with industrial production. Firstly, Khan 
et al. (2016) confirmed that fossil fuel consumption, metal smelting, and 
waste incineration industry can cause the accumulation of Cd in envi
ronment media. The industry in the study area was dominated by coal 
mining and metal smelting. The exhaust gas was mainly produced in the 
combustion process and coal mining, and the industrial wastewater 
came from the metal smelting process. The statistics data (AQBS, 2019) 
showed that the industrial waste gas emission and wastewater in 2018 
were 111.54 billion cubic meters and 28.56 million tons. Secondly, Ha 
et al. (2014) have shown that the Cu accumulation was related to in
dustrial activities, such as coal-fired power and smelting plants. Previous 
studies have also found that Cu was mainly released in industries such as 

copper-zinc mining and smelting (Zhang et al., 2010), and copper 
compounds were also produced in electroplating industry (Yi et al., 
2011). These processes could emit massive Cu-containing sewage and 
dust, which would cause soil pollution. Thirdly, (Li et al., 2020b) have 
showed that Zn was widely used in the galvanizing industry and zinc 
mining because of the corrosion resistance and excellent mechanical 
properties. Meanwhile, Zn was closely related to industrial discharge, 
such as mining and coal power plants (Liu et al., 2018a). In addition, Zn 
has also been reported to be used as a battery in the automotive and 
machinery manufacturing industry (Chen et al., 2008; Liu et al., 2017; 
Wang et al., 2020). Similar studies have also verified that Cu, Zn, and Cd 
were related to industrial activities (Dong et al., 2019; Huang et al., 
2021b; Li et al., 2021, 2020b; Wang et al., 2019b). Therefore, Factor III 
can be interpreted as industrial sources. 

Factor IV was exclusively dominated by Cr and explained 90.7% of 
the mean concentration in the PMF model. Cr showed a lower mean 
concentration than the background value, indicating that there is less 
contribution from external sources. Previously, Cr has been confirmed 
that it was generally widely present in soil parent materials and pedo
genic processes (Huang et al., 2021b; Jin et al., 2019; Lu et al., 2012; 
Zhang et al., 2018). Hence, Factor IV can be interpreted as natural 
sources. 

In recent years, many studies on TM pollution have been gradually 
focused on the quantitative source analysis based on receptor models 
(Huang et al., 2021b; Liu et al., 2018a), which combined 
mathematical-statistical analysis models with the information of pol
lutants in the environment to analyze the sources of pollutants. 
Compared with other receptor models, the PMF model had a 
non-negative constraint on a load of each factor in the solution process 
(Lv, 2019; Zhang et al., 2018), so the source composition spectrum of 
each TM was interpretable and the source of pollutants could be iden
tified quantitatively. In particular, it can handle the missing data and the 
erroneous data. Therefore, more and more studies have tried to apply 
the PMF model to the source apportionment of soil TM pollution (Guan 
et al., 2018; Liu et al., 2018a). In general, the result of PMF model must 
follow the principle of "results can be explained" in source interpreta
tion, which required researchers to have rich data analysis experience 
and comprehensive understanding of pollution characteristics in the 
study area. However, in the practical applications of PMF model, due to 
the complex emission of pollution sources, the phenomenon of super
imposition transmission is common. It is difficult for PMF model to 
effectively separate the pollution sources with strong collinearity, and 
then the identified factors are often a mixture of several types of emis
sion sources to varying degrees. Therefore, in addition to the 
non-negative elements of all the matrices, we will consider adding more 
constraints to the model calculations in subsequent studies, such as 
limiting the factor contribution matrix (F) based on the known infor
mation of the emission source spectrum to obtain more reliable analysis 
results. 

4.3. Relationship among trace metal(loid)s, pollution sources, and health 
risks 

By using Monte Carlo simulation, the health risks of all local pop
ulations (including children, adult females, and adult males) were 
assessed. The results showed that HI value of children had only a 0.2% 
probability of exceeding the USEPA`s guide values (HI = 1), while both 
adult males and adult females were in a safe state. Previous studies had 
reported that when the HQ value in the 95th percentile is lower than the 
acceptable risk threshold (HQ = 1) for Non-carcinogenic risk, it could be 
considered that the health risk caused by the target TMs is lower than 
the acceptable level (Guo et al., 2021). Therefore, it can be inferred that 
Non-carcinogenic risks for all populations in the study area are negli
gible. For another, nearly 98.75% (children), 97.5% (adult females), and 
95.5% (adult males) of TCR values exceed the acceptable threshold of 
1E-06 (Fig. 3b). It is worth noting that children, adult females, and adult 
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males have 24.1%, 7.8%, and 0.6% probability of being at an “unac
ceptable risk” level (TCR > 10E-04) (Fig. 3a), showing that the Carci
nogenic risk in this area was non-negligible. A high probability of 
Carcinogenic risk may lead to some diseases such as lung cancer and 
liver cancer (Kamarehie et al., 2019). 

In addition, children suffered from higher Carcinogenic and Non- 
carcinogenic risks than adults (Fig. 3), which might be related to their 
lower body weight and higher feeding rates. Children have a higher 
feeding rate outdoors and more accessible contact with the soils, so it is 
necessary to keep their hands and mouth clean and avoid “hand eating” 
behavior (Wang et al., 2019a). Consequently, the risk assessment of soil 
TMs should pay more attention to children. 

The health risk assessment could only help people understand the 
risk level but cannot effectively help decision-makers control TM 
pollution sources (Men et al., 2020). The source-oriented risk assessment 
results (Figs. 4–6, S5–S6) indicated that the health risks caused by four 
pollution sources had the following characteristics: (1) The health risk 
for all three groups (adult males, adult females, and children) showed 
the same change trend; (2) The Carcinogenic risk for all populations 
presented a high-risk level, while the Non-carcinogenic risk was negli
gible. Considering the uncontrollability of the natural sources, the 
health risks caused by natural sources of TMs are not deeply explored in 
this study. Therefore, this study took children as an example, focusing on 
the relationship between the anthropogenic sources (industrial sources, 
agricultural sources, and atmospheric deposition sources) and Carcino
genic risk. 

As shown in Fig. 6 and Table. S4, the contribution rate of three 
anthropogenic sources to Carcinogenic risk was ranked as follows: 
agricultural sources (86.2%) > industrial sources (12.7%) > atmo
spheric deposition sources (1.1%). Previous studies have shown that the 
health risks are closely related to the toxic coefficients of target TMs, in 
addition to the TM content of pollution sources (Huang et al., 2018b). 
Industrial sources which accounted for 64.1% of all pollution sources 
were mainly loaded on Cu (83.0%), Zn (80.3%), and Cd (96.1%), but 
contributed only 12.7% to the Carcinogenic risk. It was mainly due to 
the lower carcinogenic toxicity of Cu and Zn. Although industrial 
sources had a low probability of posing a Carcinogenic risk to children, 
more policies are still needed to prevent the risk caused by TMs, 
particularly the potentially carcinogenic element Cd. However, agri
cultural sources accounted for 12.4% of all pollution sources and 
became the largest risk source with a carcinogenic contribution rate of 
86.2%, far exceeding industrial and atmospheric deposition sources. It 

was mainly due to the high loading (89.2%) and the high toxicity of As in 
agricultural sources. Existing studies have shown that As could cause 
damage to lipids and proteins by destroying free radicals (Valko et al., 
2006), which would result in many diseases such as cancer of the lungs, 
kidneys, bladder and skin, and nervous system (Järup, 2003; Jomova 
et al., 2011). Hence, agricultural sources and As were determined as the 
priority pollution source and the priority pollution element in the study 
area. 

As discussed above, agricultural sources in this study area are mainly 
related to various agricultural activities and greening management. It is 
counted that the local fertilizer consumption reached 194,892 tons in 
2018, increasing 5513 tons over 2010. Excessive use of fertilizers and 
pesticides in agriculture and urban greening could lead to As accumu
lation (Men et al., 2021). Other studies also proved that using organic 
fertilizers instead of chemical fertilizers could effectively reduce the 
accumulation of TMs in soils (Beesley et al., 2010; Luo et al., 2009). In 
general, it is believed that reducing the using pesticides and chemical 
fertilizers could effectively alleviate the health risks of residents. Given 
sustainable development, we advocate the use of low-toxic organic 
fertilizers instead of chemical fertilizers. It is worth noting that the use of 
chemical fertilizers reached a peak in 2015 (223,594 tons) and has 
shown a downward trend in recent years, indicating that the residents 
have consciously reduce the use of chemical fertilizers in agricultural 
production and greening management. 

In general, our research emphasized that the largest source of 
pollution should not be confused with the largest source of health risks 
in health risk assessment. For the first time, the concept of priority 
control factor was put forward in this study, which can help determine 
the priority control level of soil pollution sources and target TMs and 
help decision-makers formulate strategies to mitigate pollution risks and 
reduce management costs. Future research should link priority control 
factor with more specific anthropogenic activities (such as pH, traffic 
volume, gross domestic product, population density, industrial distri
bution, and land use) to better understand the source of TMs and help 
local governments make targeted decisions. 

5. Conclusion 

In conclusion, taken Anqing City as a case, we have carried out the 
research to assess the source-oriented human health risks of TMs in soils. 
The main findings were as follows: (1) By combing PMF model and 
Correlation analysis, the agricultural sources, atmospheric deposition 

Fig. 6. Relationship among trace metal(loid)s, pollution sources, and health risks. The width of the curve represents the contribution rate. The curves of charac
teristic elements and characteristic pollution sources are marked in color. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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sources, and industrial sources were identified as the main anthropo
genic sources; (2) Results showed that the Non-carcinogenic risks of all 
populations were acceptable, while the Carcinogenic risks were all at a 
high level; (3) Based on the developed PSOR model, we have quantita
tively analyzed the relationship among TMs, pollution sources, and 
health risks. Then, agricultural sources and As were determined as the 
priority control factors in the study area. 

In this study, for the first time, we put forward the concept of priority 
control factor for the management of soil TMs, which can help decision- 
makers to formulate target control policies and reduce management 
costs of soil pollution. We acknowledge the limitations of the present 
study because the health risks caused by natural sources of TMs are not 
deeply explored, while the higher background concentrations of TMs 
can also pose a threat to human health. Therefore, it is necessary to 
conduct research of TM pollution in the areas with high background 
concentration in the future. In addition, the models used in this study 
have certain limitations, and we will consider adding more constraints 
to the model calculations and linking priority control factor with more 
specific anthropogenic activities in future studies. 
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