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Solar radiation is the Earth’s primary source of energy and has an important role
in the surface radiation balance, hydrological cycles, vegetation photosynthesis, and
weather and climate extremes. The accurate prediction of solar radiation is therefore very
important in both the solar industry and climate research. We constructed 12 machine
learning models to predict and compare daily and monthly values of solar radiation and
a stacking model using the best of these algorithms were developed to predict solar
radiation. The results show that meteorological factors (such as sunshine duration, land
surface temperature, and visibility) are crucial in the machine learning models. Trend
analysis between extreme land surface temperatures and the amount of solar radiation
showed the importance of solar radiation in compound extreme climate events. The
gradient boosting regression tree (GBRT), extreme gradient lifting (XGBoost), Gaussian
process regression (GPR), and random forest models performed better (poor) prediction
capabilities of daily and monthly solar radiation. The stacking model, which included the
GBRT, XGBoost, GPR, and random forest models, performed better than the single
models in the prediction of daily solar radiation but showed no advantage over the
XGBoost model in the prediction of the monthly solar radiation. We conclude that the
stacking model and the XGBoost model are the best models to predict solar radiation.

Keywords: solar radiation prediction, meteorological factors, machine learning, stacking model, climate
extremes model comparison

INTRODUCTION

Solar radiation is the Earth’s main source of energy and the amount of solar radiation
reaching the Earth’s surface is affected by the atmosphere, hydrosphere and biosphere
(Budyko, 1969; Islam et al., 2009). Solar radiation also has a vital role in the global
climate, and even small changes in the output of energy from the Sun will cause
considerable changes in the Earth’s climate (Beer et al., 2010; Siingh et al., 2011). Variations

Frontiers in Earth Science | www.frontiersin.org 1 April 2021 | Volume 9 | Article 596860

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.596860
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2021.596860
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.596860&domain=pdf&date_stamp=2021-04-30
https://www.frontiersin.org/articles/10.3389/feart.2021.596860/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-596860 April 26, 2021 Time: 15:54 # 2

Huang et al. Solar Radiation Prediction

in solar radiation affect global temperatures, global mean
sea-level, and compound extreme climate events (Bhargawa
and Singh, 2019). Accurate observations and analyses of
the temporal and spatial variability of solar radiation are
therefore essential in research on solar energy, building
materials, and extreme weather and climate events (Garland
et al., 1990; Cline et al., 1998; Hoogenboom, 2000; Grant
and Tuohimaa, 2004; Wild, 2009; Beer et al., 2010; Besharat
et al., 2013; Ohunakin et al., 2015). Many methods have been
developed to predict solar radiation, including theoretical
parameter models, empirical models, artificial intelligence
models, and satellite retrieval data (Iziomon and Mayer, 2002;
Mellit, 2008; Lu et al., 2011; Li et al., 2012; Halabi et al.,
2018; Makade et al., 2019). Angstrom (1924) and Prescott
(1940) first proposed the A–P model, which is widely used
to predict solar radiation. Bristow and Campbell (1984)
constructed the BCM model by analyzing the relationship
between solar radiation and daily maximum and minimum
temperatures. Yang et al. (2001) developed a hybrid model
(YHM), improving the A–P model by exploring the effects
of meteorological parameters and then validating the model’s
accuracy in Japan. Salazar (2011) compared the YHM and a
climatological solar radiation model to estimate the horizontal
direct and diffuse components of solar radiation to generate
a corrected version of the YHM (CYHM). Gueymard, 2003
selected 19 solar radiation models to investigate solar irradiance

predictions, concluding that detailed transmittance models
perform better than bulk models. The development of
machine learning has inspired many researchers to use machine
learning algorithms to develop solar radiation prediction models
(Azadeh et al., 2009; Jiang, 2009; Chen et al., 2011; Voyant
et al., 2012). Fadare (2009) and Linares-Rodríguez et al. (2011)
adopted artificial neural network (ANN) technology to construct
solar radiation prediction models to test their predictive ability.
Xue (2017) used a back-propagation algorithm to develop a
solar radiation prediction model and showed that the predictive
accuracy depended on the combination and configuration of
the input parameters. Chen et al. (2011) used the support
vector machine (SVM) method to construct a solar radiation
prediction model and showed that the SVM-based algorithm
had a differential predictive accuracy when using different kernel
functions. Olatomiwa et al. (2015) and Shamshirband et al.
(2016) both optimized the SVM algorithm and achieved good
prediction results. Tree algorithms, such as the random forest
algorithm and the gradient boosting regression tree (GBRT)
algorithm, have been used to construct solar radiation prediction
models with encouraging results (Sun et al., 2016; Persson et al.,
2017; Fan et al., 2018; Zeng et al., 2020). In recent years,
some scholars have carried out the comparative analysis of a
variety of machine learning algorithms (Meenal and Selvakumar,
2018; Pang et al., 2020; Shamshirband et al., 2020), and all
these works show that the ANN algorithm does not realize

FIGURE 1 | The geographical location of solar radiation monitoring station in Ganzhou County (red triangle).

Frontiers in Earth Science | www.frontiersin.org 2 April 2021 | Volume 9 | Article 596860

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-596860 April 26, 2021 Time: 15:54 # 3

Huang et al. Solar Radiation Prediction

good prediction results but provides a direction for algorithm
improvement. Some studies use deep learning techniques to
predict solar radiation. For example, Shamshirband et al. (2019)
discuss different types of deep learning algorithms applied
in the field of solar, and results show hybrid networks have
better performance compared with single networks. Mishra
et al. (2020) proposed a short-term solar radiation prediction
model using WT-LSTM and achieved good results, showing that

deep learning technology has great potential in solar radiation.
A CEEMDAN–CNN–LSTM model is proposed by Gao et al.
(2020) for hourly multi-region solar irradiance forecasting, and
the results present that the model can achieve more accurate
prediction performance than other models.

As an investigative technique, machine learning has achieved
noteworthy success in many areas, including natural language
processing and image recognition (Angra and Ahuja, 2017).

FIGURE 2 | The framework of the stacking model.
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The use of machine learning has come to the forefront of the
construction of solar radiation models and is a popular direction
of research. However, many researchers have focused on the
construction of one or several machine learning methods, and
there are few in-depth considerations of the differences among

these models. Therefore, we used a daily dataset of meteorological
elements and basic radiation elements for Ganzhou, China, for
the time period 1980–2016 to explore the differences between
models of solar radiation prediction. After data processing,
we applied the random forest algorithm to selected variables

FIGURE 3 | Flow chart of the machine learning models used to estimate solar radiation.
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and extracted a monthly dataset based on the daily dataset.
We selected 12 machine learning methods to construct a solar
radiation prediction model. By comparing the prediction results
of these 12 machine learning models, we found the solar
radiation prediction models with the best prediction ability. The
models with the best prediction ability were then stacked in a
linear model. A stacking model was obtained and the predicted
results were analyzed.

DATA AND MACHINE LEARNING
ALGORITHMS

Study Area and Datasets
Ganzhou city (24.48–30.06◦ N, 113.57–118.46◦ E) lies in the
south of Jiangxi province in the southern subtropical zone of
China and is characterized by a subtropical monsoon climate. It
is bordered to the south by Guangdong province, to the east by
Fujian province, and to the west by Hunan province. Ganzhou
has a mild climate with four distinct seasons and both winter
and summer monsoons, with precipitation concentrated in the
spring and summer seasons. The annual average temperature is
19.1–20.8◦C and the annual rainfall is 1152.2–1554.9 mm. There
is a solar radiation monitoring station (No. 57993) in Ganxian
County (25.51◦ N, 114.57◦ E, 137.5 m above sea-level) (Figure 1).

Experimental data were gathered from the China
Meteorological Information Center website, including a

dataset (V3.0) of daily climate data (temperature, precipitation,
air pressure, humidity, temperature, visibility, wind speed,
and sunshine duration) from surface stations in China
and a daily radiation dataset from Ganzhou’s surface solar
radiation monitoring station. After referring to relevant
research (Will et al., 2013; Mohammadi et al., 2016) and
analyzing the quality of the collected data, we selected
the data from 1980 to 2016 to estimate solar radiation.
The data were selected including the visibility (VIS), the
mean relative humidity (RHU-mean), the minimum relative
humidity (RHU-min), the mean wind speed (WIN-mean),
the mean precipitation (PRE-mean), the mean pressure (PRS-
mean), the maximum pressure (PRS-max), the minimum
pressure (PRS-min), the sunshine duration (SSD), the
mean temperature (TEM-mean), the maximum temperature
(TEM-max), the minimum temperature (TEM-min), the
mean ground temperature (GST-mean), and the total solar
radiation (RAD).

Quality control of the data was essential considering the length
of the study period and the inherent errors in the instrument-
based observations. We excluded missing and abnormal values
in the meteorological data from the final dataset and then
applied the requirements for solar radiation data quality
control proposed by Younes et al. (2005). In total, 13,100
daily data records and 432 monthly average data records
were obtained. The dataset was further divided into training
and test sets and then normalized, with the training set

FIGURE 4 | Predictive performance (R2 and RMSE) of the random forest model during variable selection. Variables were removed in the order PRS-min, PRS-max,
RHU-min, PRE-mean, TEM-mean, WIN-mean, TEM-max, TEM-min, RHU-mean, PRS-mean, and VIS.
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accounting for 90% and the test set accounting for 10% of
all data. Our final sample consisted of 11,790 daily training
sets, 1,310 daily test sets, 388 monthly training sets, and 44
monthly test sets.

Machine Learning Predictive Algorithms
and Stacking Techniques
Machine Learning Algorithms
With the development of machine learning technology, an
increasing number of researchers are using machine learning
to predict solar radiation. We investigated 12 different machine
learning predictive algorithms: multiple linear regression (Baczek
et al., 2005; Nathans et al., 2012), the radial basis function neural
network (Mahanty and Dutta Gupta, 2004; Li M. et al., 2008),
the K-nearest neighbor model (Shen and Chou, 2005; Deng
et al., 2016), the decision tree (Brodley and Friedl, 1997; Quinlan,
1999), the back-propagation neural network (Van Ooyen and
Nienhuis, 1992; Trappey et al., 2006), the extreme learning
machine (Deng et al., 2015; Huang G. et al., 2015), SVM
regression (Burges, 1998; Shamshirband et al., 2016), Gaussian
process regression (GPR) (Nguyen-Tuong et al., 2009; Ebden,
2015), the GBRT (Zhang and Haghani, 2015; Johnson et al.,
2018), adaptive boosting (Adaboost) (Zhu et al., 2006; Li X.
et al., 2008; Wang, 2012), extreme gradient lifting (XGBoost)
(Nielsen, 2016; Torlay et al., 2017), and random forest (Kapwata
and Gebreslasie, 2016; Sun et al., 2016) algorithms. A detailed
description of machine learning methods can be found in
Supplementary Text S1.

Stacking Model
Stacking technology is a general integration algorithm that
integrates advanced learners by using multiple lower-level
learners to achieve higher performance (Agarwal and Chowdary,
2020). In general, the K-fold cross-validation method is used to
train and test these models and then output the prediction results.
The prediction results output by each model is then combined
into a stacking model, which is built to reduce the generalization
errors. The stacking model usually consists of two layers. The first
layer is the base learner, and the input is the initial training set.
The second layer is trained with the output data from the first
layer as the input data and gives the final results.

The steps of the stacking model construction are as Figure
2. Each model is trained using five-fold cross-validation. The
training set is divided into five parts, and four parts are selected
as the training data and one set as the test data. The test data in
each of the four training sets is predicted to obtain a prediction
result (a) and the test set data are predicted by the trained model
to obtain the test set prediction result (b). After five training runs,
the prediction result a of each of the five runs is combined into
one column as A and the prediction result b is averaged as B.
The new datasets A and B are obtained, in which the number
in A is the same as the number of training sets, but A is one-
dimensional data. After constructing N single models, N A and N
B are generated, then the N A and N B data are combined into a
new training set and a new test set. A simple linear model is used
as the second layer to train using the new training set and test
with the new test set. TA
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MATERIALS AND METHODS

Prediction of the Flow of Solar Radiation
Our experiment consisted of three parts (Figure 3): data
preprocessing, model building, and model prediction. The data
preprocessing involved four steps: data quality control, dataset
partitioning, data scaling, and variable selection. Among them,
data quality control, dataset partitioning, and data scaling are
described in Section “Study Area and Datasets,” and variable
selection is described in Section “Variable Selection.” The main
processes of the model building were as follows: the selection
of the machine learning algorithm, parameter selection, model
construction, and model saving. We used the 10-fold cross-
validation method (Jiang and Wang, 2017) in the parameter
selection step. We can get a detailed description of the model
building in Section “Model Building.” In the model prediction
step, the saved model from the model building step was used to
predict the solar radiation using the test dataset. Then, we save
the predicted results and analysis. The specific experimental steps
proceeded as follows:

(1) data collection and data preprocessing;
(2) choose a machine learning algorithm from the 12

algorithms to predict solar radiation;
(3) compare solar radiation predictive ability based on

different parameters;
(4) if the best predictive ability is achieved, save the model;
(5) return to step (2) and choose another machine learning

algorithm until all 12 algorithms have been subjected to
machine learning model building;

(6) input the preprocessing dataset (we prepared datasets
on two timescales—daily and monthly—to estimate the
solar radiation predictive performance of the 12 machine
learning models) and use the 12 saved machine learning
models to predict solar radiation and obtain the predicted
results;

(7) save predicted results and analyze.

Variable Selection
The variable selection step is important in constructing machine
learning models. The current mainstream variable selection
algorithms include the genetic algorithm (Huang and Chiu,
2006), the Tabu search (Corazza et al., 2013), particle swarm
optimization (Khatibi Bardsiri et al., 2013), and the random
forest algorithm (Kapwata and Gebreslasie, 2016). We used the
random forest algorithm to select data variables (Zeng et al.,
2020). Normalized daily data were used to construct and train
the random forest model and to calculate the model’s importance.
The data preprocessing experiment was intended to verify the
importance of variables in a given model and to analyze the
impact of changes in the variables on the model’s predictive
performance. The experiment proceeded as follows:

(1) divide the dataset into a training set and test set after
completing the data quality control process;

(2) use the training set to train and save the model, then
calculate the correlation coefficient (R2) and the root mean
square error (RMSE) of the saved model;

(3) based on the order of importance of the variables in the
model, eliminate the least important variable;

(4) repeat steps (2) and (3) until only two variables remain (the
minimum required for calculation).

Figure 4 shows that when the model contained <10 variables,
R2 tended to decrease and the RMSE tended to increase. Between
12 and 10 variables, R2 reached 0.921 and the RMSE was
2.042 MJ/m2. With four variables, R2 decreased sharply from
0.904 to 0.895 and the RMSE decreased from 2.19 to 2.28 MJ/m2.
Therefore, the prediction of solar radiation can achieve the best
performance when using 10 variables, then the subsequent model
experiments were trained with these 10 variables.

Model Building
Experiments were performed in Python 3.6 using third-party
libraries such as Pandas, NumPy, the scikit-learn machine
learning library (Sklearn), and the Xgb library. Twelve machine
learning algorithms were chosen to build the models. The initial
parameter settings of each algorithm were determined according
to the algorithm’s characteristics. For example, for a neural
network model, the number of hidden layers and the number
of neurons were determined based on empirical formulas and
neural network design principles (Basheer and Hajmeer, 2000).
The respective selection ranges of the adjustment parameters
and other parameters were then set according to the parameter
adjustment methods for different machine learning algorithms.
We used Sklearn’s GridSearchCV method to select parameters
for each of the 12 machine learning models, ultimately saving the
best model. The first layer of the stacking model consists of those
multiple models with excellent predictive power. The parameters
of the first layer model are the parameters selected previously
and the second layer is constructed by multiple linear regression.
After obtaining the best parameters, the train set was used to train
the model and the final model was saved. The time spent training
the model is the model construction time, and the final model size
is the model memory. When the model was constructed, input the
test set was input to get the prediction result.

Statistical Metrics
The models were evaluated using four indicators: R2, RMSE,
MAE, and BIAS:

R2
=

(∑n
t = 1 (yot−ȳo)(ymt− ¯ym)

)2∑n
t = 1 (yot−ȳo)

2
·
∑n

t = 1 (ymt− ¯ym)2 (1)

RMSE =

√√√√ 1
n

n∑
t = 1

(yot−ymt)
2 (2)

MAE =
1
n

n∑
t = 1

∣∣∣∣ (yot−ymt
) ∣∣∣∣ (3)

BIAS =
(
yot−ymt

)
(4)
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where n indicates the amount of data, ymt is the predicted
solar radiation, yot is the observed solar radiation, and ¯ym
and ȳo represent the average of the predicted and observed
results, respectively.

If R2 is close to 1, then the observed and predicted values are
closely correlated. The closer the RMSE/MAE values are to 0, the
better the predicted value fits the observed value. A combination
of metrics, including, but not limited to, the RMSE and MAE, are
often required to assess the performance of the model.

RESULTS

Description and Selection of Variables
The average annual range of the RAD was 1–30.48 MJ/m2,
with a mean value of 12.02 MJ/m2 and a standard deviation of
6.28 MJ/m2 (Table 1). The annual mean (standard deviation)
values were VIS 16.02 (6.21) km, RHU-mean 74.46 (11.04)%,
WIN-mean 1.45 (0.78) m/s, PRE-mean 39.5 (98.9) mm, PRS-
mean 999.51 (4.86) hPa, TEM-mean 19.66 (4.46)◦C, TEM-
max 24.28 (5.46)◦C, TEM-min 16.39 (4.2)◦C, GST-mean 22.29
(5.56)◦C, and SSD 4.79 (3.92) h. Apart from the RHU-
mean, PRE-mean, and PRS-mean, the mean values of the
variables were highest in summer, followed by spring and
autumn, and were lowest in winter. Supplementary Figure 1
shows the annual maximum GST-mean and the corresponding

solar radiation from 1980 to 2016. The trend of GTS-max
and the corresponding solar radiation values were generally
consistent and increased with the solar radiation, confirming
the importance of solar radiation in compound climate extreme
events (Ohunakin et al., 2015).

Figure 5 shows the importance of the input variables as
predictors in the final random forest model. SSD was identified
as the most critical variable, followed in descending order
by GST-mean, VIS, PRS-mean, RHU-mean, TEM-min, TEM-
max, WIN-mean, TEM-mean, PRE-mean, RHU-min, PRS-
max, and PRS-min. The importance of SSD was 85%, which
agrees with the results of earlier studies (Chen et al., 2013;
Suehrcke et al., 2013; Zeng et al., 2020). The importance
of GST-mean was 6% and the importance of all other
variables was <5%.

Predictive Performance for Daily Solar
Radiation
Figure 6 shows the performance of the 12 machine learning
models in predicting solar radiation for the given daily dataset.
The statistical results show that most of the machine learning
models used to predict solar radiation yielded satisfactory results.
The R2 values of the 12 machine learning models ranged from
0.838 to 0.925. The GBRT, GPR, XGBoost, and random forest
models were the best machine learning models to predict solar
radiation with R2 values of 0.925, 0.923, 0.922, and 0.921,

FIGURE 5 | Importance of variables in predicting solar radiation using the random forest model.

Frontiers in Earth Science | www.frontiersin.org 8 April 2021 | Volume 9 | Article 596860

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-596860 April 26, 2021 Time: 15:54 # 9

Huang et al. Solar Radiation Prediction

FIGURE 6 | Scatter plots of the cross-validation results for 12 machine learning models in predicting daily solar radiation at Ganzhou from 1980 to 2016.
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respectively. The R2 values of the extreme learning machine and
decision tree models were 0.874 and 0.838, respectively, which
indicated that these models had the poorest precision for the

prediction of solar radiation. The RMSE values of the 12 machine
learning models were in the range 1.987–2.999 MJ/m2. The
RMSE value of the GBRT model was the lowest (1.987 MJ/m2),

FIGURE 7 | Deviation distribution of machine learning models in predicting daily solar radiation at Ganzhou from 1980 to 2016.
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indicating that this model was the best for predicting solar
radiation. By contrast, the RMSE value of the decision tree
model was the largest (2.999 MJ/m2), suggesting that this
model was the poorest predictor of solar radiation. The MAE
values of the 12 machine learning models ranged from 1.498
to 2.266 MJ/m2, with the GBRT model returning the smallest
value (MAE = 1.498 MJ/m2), meaning that the deviation
between the predicted and measured values was also the smallest.
The MAE value of the decision tree model was the largest
(MAE = 2.266 MJ/m2), demonstrating that this model had the
largest prediction bias. The MAE values of the other machine
learning models were both <2.0 MJ/m2.

Figure 7 shows distribution maps of the daily deviation
probability to further explore the distribution of the deviation of
solar radiation prediction for the 12 machine learning models.
The results showed that the bias of the GBRT and the decision
tree models both were 0.01 MJ/m2, followed by the RBNN
model (−0.02 MJ/m2). The bias of the AdaBoost model for solar
radiation prediction was −0.32 MJ/m2. The deviation values of
most models were mainly distributed between−6 and+6 MJ/m2,
whereas those of the decision tree and extreme learning machine
models were mainly distributed between −8 and +8 MJ/m2.
Table 2 shows the number of deviation values that fell within the
range ±2 MJ/m2 in the prediction of solar radiation for the 12
models. The deviation in solar radiation prediction for the GBRT,
GPR, XGBoost, and random forest models each exceeded 940,
compared with only 734 for the decision tree model.

The prediction results from the daily value data indicate
that the GBRT, XGBoost, GPR, and random forest models
had a relatively good predictive ability, whereas the extreme
learning machine and decision tree models performed poorly.
The random forest model had the longest construction time,
followed by the GBRT and the GPR models; the XGBoost model
had the shortest construction time. This is related to the model
principle—for example, to obtain better training results, the
random forest model needs more CART-based models, which
increases the training time. By contrast, XGBoost uses parallel
processing to increase the operational speed and therefore
requires less time.

TABLE 2 | Statistics for the amount of daily data for each model deviation within
±2 8 MJ/m2.

Model Number of data points Percentage

Multiple linear regression 861 65.7

Radial basis function neural network 804 61.4

K-nearest neighbor 894 68.2

Decision tree 734 56.0

Back-propagation neural network 935 71.4

Extreme learning machine 768 58.6

Support vector machine regression 846 64.5

Gaussian process regression 941 71.8

AdaBoost 794 60.6

Gradient boosting regression tree 956 73

XGBoost 950 72.5

Random forest 945 72.1

Predictive Performance for Monthly
Solar Radiation
Figure 8 presents a scatter plot of the monthly predicted and
measured values for different models. The R2 values for the
12 machine learning models ranged from 0.900 to 0.944 and
were > 0.9 for all models. The XGBoost model gave the best
prediction result, with an R2 value of 0.944; the GPR (R2 = 0.941),
GBRT (R2 = 0.938), and random forest (R2 = 0.936) models
also demonstrated a good prediction performance. The K-nearest
neighbor (R2 = 0.900) and decision tree (R2 = 0.901) models gave
relatively poor prediction results. The RMSE of each model fell
between 1.131 and 1.580 MJ/m2. The XGBoost model returned
the lowest RMSE of 1.131 MJ/m2, reflecting the highest precision
of all the models. The decision tree model had the lowest
precision (RMSE = 1.580 MJ/m2). The MAE values for all models
ranged from 0.870 to 1.174 MJ/m2. The MAE of the XGBoost
model was the smallest (MAE = 0.870 MJ/m2), indicating that
the predicted value was close to the observed value.

For the monthly average data, Figure 9 shows the largest
deviation in the RBNN model (bias 0.88 MJ/m2), followed by
random forest (bias −0.02 MJ/m2) and SVM regression (bias
0.08 MJ/m2) models and the lowest deviation in the GBRT model
(bias −0.01 MJ/m2). In contrast with the deviation in the daily
data, the monthly average prediction bias of most models was
positive, although the decision tree, GBRT, and random forest
models showed a negative deviation. According to the monthly
mean deviation probability distribution, the main distribution
interval of the model deviation was within ±4. Table 3 gives the
statistical results for the monthly data with a predicted deviation
between −2 and +2 MJ/m2, with 37 data points in the random
forest model and 40 data points in the GBR model.

The XGBoost, GPR, GBRT, and random forest models
showed better predictive ability on the monthly average data,
whereas the K-nearest neighbor and decision tree models
performed poorly. When the amount of data is small, the
XGBoost, GPR, GBRT, and random forest models are all
built very quickly, but the XGBoost model is the fastest
with the highest prediction accuracy. Besides, XGBoost has
strong anti-overfitting and generalization abilities. This is
advantageous for the construction of the monthly radiation value
in models with a small number of data points, which is an
advantage over the other machine learning models. The XGBoost
model is therefore recommended when there is only a small
number of data points.

Predictive Performance of the Stacking
Model
The XGBoost, GPR, GBRT, and random forest single models
showed excellent prediction capabilities. These four models were
therefore used as the first layer model and multiple linear
regression was used as the second layer model to build a
stacking model. Figures 10A,B show the predicted results and
bias probability distributions. Figure 10A shows that the R2 of
the stacking model is 0.929, the RMSE is 1.940 MJ/m2, and the
MAE is 1.457 MJ/m2. Compared with the 12 single models, the
stacking model has the highest R2 value, but the lowest RMSE
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FIGURE 8 | Scatter plots of the results of machine learning models in predicting monthly average solar radiation at Ganzhou from 1980 to 2016.

and MAE. Figure 10B shows that the average deviation of the
stacking model is 0 MJ/m2 and the deviation of the distribution
is more uniform than that of the single models. The stacking

model predicts 74.8% of the data with a bias distribution in
[−2, 2]. The stacking model has a better prediction ability for
the daily data than the single models. Figure 10C shows that
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FIGURE 9 | Deviation distribution of machine learning models in predicting the monthly average solar radiation at Ganzhou from 1980 to 2016.

the R2 value of the stacking fusion model is 0.943, the RMSE
is 1.142 MJ/m2, and the MAE is 0.884 MJ/m2, all lower than
the XGBoost model (R2 0.944, RMSE 1.131 MJ/m2, and MAE
0.870 MJ/m2). Figure 10D shows that the average value of the

stacking deviation of the stacking model is 0.13 MJ/m2 and
there are only 39 deviations between [2, −2]. The stacking
model has no advantage over the XGBoost model in terms of
construction time.
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TABLE 3 | Statistics for the amount of monthly data in each model
deviation within ±2.

Model Number of data points Percentage

Multiple linear regression 35 79.5

Radial basis function neural network 36 82

K-nearest neighbor 36 82

Decision tree 38 86.4

Back-propagation neural network 34 77.3

Extreme learning machine 35 79.5

Support vector machine regression 36 82

Gaussian process regression 40 90.9

AdaBoost 37 84.1

Gradient boosting regression tree 38 77.3

XGBoost 40 90.9

Random forest 37 84.1

DISCUSSION

Many studies have compared the ability of machine learning
algorithms to predict solar radiation (Supplementary Table 1).
Moreno et al. (2011) used an ANN and generalized regression
to build models separately, positing that an ANN has the same
predictive power as generalized regression. Yang et al. (2014)
applied ANN-SVM, SVM, and ANN to construct separate

models, giving a model performance in the order ANN-
SVM > SVM > ANN. Wang et al. (2016) compared the MLP,
RBNN, and GRNN models and noted RBNN > GRNN > MLP
in terms of performance. We used daily and monthly data to
predict the performance of 12 machine learning models and
showed that the GBRT, GPR, XGBoost, and random forest
models had better prediction capabilities than the other models.
We also combined the XGBoost, GBRT, GPR, and random
forest models using stacking technology. The performance of
the stacking model in predicting the daily solar radiation
set was better than that of the 12 single models, but the
performance using the monthly dataset gave no advantage over
the XGBoost model.

We found that the input of a small measured value of
solar radiation returned a large predicted output value, whereas
the input of a large value of solar radiation returned a
small predicted output value after machine learning processing.
This phenomenon may be linked to data that were relatively
concentrated and contained fewer, but higher, measured values.
The data scaling method greatly influences the performance
of machine learning models (Huang J. et al., 2015; García
et al., 2016). Normal processing methods include no processing,
normalization, standardization, and regularization. We adopted
four different data processing methods to build 12 different
machine learning models with daily or monthly data. The results
are shown in Supplementary Tables 2, 3.

FIGURE 10 | (A–D) Scatter plot and distribution of deviation of the prediction results of the stacking model.
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CONCLUSION

We performed data preprocessing and variable selection
based on meteorological elements and solar radiation data
from 1980 to 2016 for Ganzhou station, China. Then, 12
machine learning models were developed using Sklearn and
the Xgb library. By comparing and evaluating the predictive
ability of the 12 machine learning models using R2, the
RMSE, the MAE and BIAS indices, the XGBoost, GPR,
GBRT, and random forest models were selected as the
first layer, and multiple linear regression was selected as
the second layer to construct a stacking model to predict
solar radiation.

Using the random forest algorithm to select the variables,
the SSD was identified as the most important variable.
The time series of the annual maximum GST-mean and
the corresponding solar radiation value from 1980 to 2016
showed that the maximum GTS-max increases with the solar
radiation, which confirms the importance of solar radiation
in compound extreme climate events. The GBRT, XGBoost,
random forest, and GPR models performed better than
the other models for the daily and monthly datasets. The
GBRT model had the best predictive ability for the daily
datasets, whereas the XGBoost model had the best predictive
ability for the monthly datasets. The random forest model
had the longest construction time, followed by the GBRT
and GPR models, whereas the XGBoost model had the
shortest construction time. This phenomenon is related to the
principles of the models.

The prediction ability of the stacking model was improved in
the daily solar radiation prediction model, but the monthly model
performed poorly, which may be related to too little monthly
training data. We concluded that the XGBoost model is the
best solar radiation value prediction model, although when the
amount of data is large, we suggest using the stacking fusion or
XGBoost model to build the model.
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